Monocrystalline CdSe for Si-based tandem applications: its potential and challenges

Yong-Hang Zhang¹

Other Contributors: Zheng Ju,² Xin Qi,¹ Stephen Schaefer,¹ Martha McCartney,²

David Smith,² Allison McMinn,¹ Andrew Chizmeshya,³ and Sachit Grover⁴

¹School of Electrical, Computer, and Energy Engineering,

²Department of Physics,

³School of Molecular Science,

Arizona State University, Tempe, AZ 85281, USA

⁴California Technology Center, First Solar Inc., Santa Clara, CA, 95050, USA

This work is supported by the NSF I/UCRC SPF2050 and First Solar Inc.

MBE Optoelectronics Group =

Motivation: CdSe/Si tandem solar cells

Overview:

- CdSe with a bandgap of 1.72 eV is ideal for Si based tandem cell.
- Theoretical power conversion efficiency of the tandem cell is ~40%.
- The predicted achievable tandem-cell efficiency may exceed 30% even with a minority carrier lifetimes as short as 1 ns in the CdSe cell

Goal:

Study MBE-grown CdSe double-heterostructures (DHs) and its potnetial application in solar cells.

CdSe/Si tandem cell concept

Our previous work on CdSe thin films

- Most existing research focuses on poly CdSe using non-epitaxial methods: closedspace sublimation, thermal evaporation, electrodeposition
- We demonstration of single-crystal CdSe for n⁺-CdSe/p-ZnTe solar cells in 2009.

CdSe

1500

1000

GaSb

0

500

ω (arcsec)

Voltage (V)

Our previous work: S. Wang et al, "CdSe/ZnTe Heterojunction Solar Cells Grown on GaSb", PVSC 2009.

10

104

10

0

10

10

Intensity (a. u.)

ZnTe

Wurtzite (WZ) $E_g = 1.72 \text{ eV}$ a = 4.299 Åc = 7.015 Å

Phases of CdSe

- CdSe mainly has two phases: zincblende, wurtzite.
- Wurtzite is the most stable phase at room temperature
- Our DFT calculations shows that formation energies for ZB and WZ phases differ by only 3.4 meV/atom

Can we grow single-crystal wurtzite CdSe in ZB InAs substrates!

Our approach: Use InAs (111) substrates

[112]

[110]

Dual-chamber MBE system for III-V/II-VI growth

Dual MBE chambers for growth of II-VI and III-V materials

MBE Optoelectronics Group

MBE growth of CdSe thin films

- CdSe thin films grown on InAs (100), (111)A, and (111)B substrates
- 100 nm InAs (111) buffer growth proceeds at 500 °C, ~0.5 ML/s, As/In = 40
- CdSe growth temperature 250 350 °C calibrated by optical pyrometer
- 3min Cd or Se soak employed to prepare heterointerface in either Cd- or Se-rich initial condition
- Cd/Se flux ratios range from 0.72(Se-rich) to 6.73(Cd-rich), typical CdSe growth rate ~0.8 ML/s

Typical sample structure

Shutter operation sequence for Cd soak

Close Se shutter to terminate growth

Zincblende CdSe on InAs(100)

450 nm thick single-crystal zincblende (cubic) CdSe film grown on InAs (100) at 250 °C, 0.82 ML/s, Cd/Se flux ratio of 1.35

SEM cross-sectional images of the MBE layers

 Cd-rich growth yields highly oriented crystalline films and Se-rich growth yields polycrystalline films with nano columns ~10-100 nm

MBE Optoelectronics Group =

 Surface roughness increases with growth temperature and nano crystals appear on surface of 350 °C grown sample

X-ray diffraction

- Single crystal layer peaks have been observed.
- The ZB strained CdSe (111) peak nearly **overlaps** with WZ CdSe (0002) XRD peak
- Increased XRD FWHM correlates with film roughness/polycrystallinity in SEM images

TEM images

E A 1950 0-000
In As (111) B
300 °C
Cd/Se = 6.73

[110] projection – Lots of twins in FFT and stacking faults. ZB and WZ layers are distinguished.

Improved crystalline quality with annealing

Annealed CdSe

MBE as-grown CdSe

- 300 450 °C annealing on samples with a SiN_x cap at for 5 minutes under ambient N₂
- High-resolution TEM and corresponding FFT confirm WZ structure for post-annealing sample

Steady-state photoluminescence

- ~530 nm CdSe on InAs (111)B, grown at 250 °C, Cd/Se flux ratio = 1.35
- PL intensity maximized with 400 °C anneal

Time-resolved photoluminescence

TRPL measurements have demonstrated single exponential decay under 1 sun condition

Epitaxial Lift-off of CdTe/MgCdTe DH Thin Films

Thin film: better performance, light weight, low cost, II-VI/silicon tandem configuration

MBE Optoelectronics Group =

J. Ding, C.-Y. Tsai, Z. Ju, and Y.-H. Zhang. Appl. Phys. Lett. 118, 181101 (2021) (Editor's pick and a features article).

Water-soluble lift-off technology for CdTe solar cells

Contributors: Xin Qi¹, Jia Ding¹, Zheng Ju², Stephen Schaefer¹, and

Yong-Hang Zhang¹

¹School of Electrical, Computer, and Energy Engineering,

²Department of Physics,

Arizona State University, Tempe, AZ 85281, USA

⁴California Technology Center, First Solar Inc., Santa Clara, CA, 95050, USA

MBE Optoelectronics Group =

This work was partially supported by AFRL and ASU.

The goal is to demonstrate ultra-thin Cd(Se)Te, and possibly CdSe, solar cells with record performance.

ELO Process for Device Fabrication

MBE Optoelectronics Group =

Thin films after ELO

ELO CdTe/MgCdTe DH Solar Cell

Flexible Monocrystalline CdTe/MgCdTe DH thin-film solar cell.

Xin Qi, Jia Ding, Zheng Ju, Stephen Schaefer, Yong-Hang Zhang, IEEE PVSC, 2022.

- MBE growths of CdSe at 250 350 °C with Cd/Se flux ratios from 0.72
 6.73 are demonstrated
- Zincblende CdSe on InAs(100) is achieved with excellent crystallinity
- CdSe grown on InAs (111) has mixed wurtzite and zincblende phases
- PL spectra confirm that ZB layer emits at 743 nm and WZ at 713 nm.
- Structural defects limit the PL quantum efficiency and carrier lifetime.
- Annealing coverts most ZB phase into WZ phase at elevated temperatures

Acknowledgement

This work is supported by the NSF I/UCRC SPF2050 and First Solar Inc.

Our approach: CdSe on polar InAs (111) plane

DFT simulation of CdSe/InAs interface

SLAB Calculations (PAW-LDA):

Ref SLABS	kpts	E (eV)	ΔE	AVG	AVG	AVG	AVG	AVG	AVG
			(eV)	Cd-Se	In-As	Cd-As	In-Se	Se-As	Cd-In
				(Å)	(Å)	(Å)	(Å)	(Å)	(Å)
CdSe-111	2x2x1	-208.37108							
ENCUT = 450 eV	4x4x2	-208.19186		2.603±0.038					
InAs-111	2x2x1	-279.46809							
ENCUT = 450 eV	4x4x2	-278.94932			2.610±0.017				
Ref AVGS	4x4x2	-243.57059		2.607					
CdSe-InAs	2x2x1	-243.40899	+0.511	2.604±0.031	2.609±0.035		2.666		
ENCUT = 450 eV	4x4x2	-243.03879	+0.532	2.602±0.032	2.613±0.029		2.664		
CdSe-AsIn	2x2x1	-239.41214	+4.507	2.604±0.034	2.617±0.020			2.676	
ENCUT = 450 eV	4x4x2	-239.12875	+4.442	2.602±0.041	2.615±0.017			2.642	
SeCd-InAs	2x2x1	-240.99548	+2.924	2.608±0.025	2.606±0.026				2.770
ENCUT = 450 eV	4x4x2	-240.67545	+2.895	2.608±0.025	2.611±0.016				2.767
SeCd-AsIn	2x2x1	-243.42352	+0.496	2.609±0.016	2.611±0.032	2.605			
ENCUT = 450 eV	4x4x2	-243.04843	+0.522	2.608±0.015	2.609±0.031	2.607			

In this table the formation energy ΔE of A-A, A-B and B-B type interfaces is obtained by

 $\Delta E = - \frac{1}{2}$ Interface CdSe-InAs is CdSe-B (bottom) InSe-A (top)

Note: the formation energies obtained in this way contain the interface energy, and the energy associated with removing one free CdSe-B surface and one free InAs-A surface (see below for a description of a new method for obtaining these individual contributions Based on the above the interfaces CdSe-A / InAs-B and CdSe-B / InAs-A <u>much more favorable</u> than CdSe-A/InAs-A or CdSe-B/InAs-B

