Progress in CdSeTe absorber and As doping

W. S. Sampath and collaborators from CSU, ASU, NREL, UIC, CSM and WSU 10-20-22

BACKGROUND

- Research presented here is based on two completed 3-year SETO projects and two completed Ph.D projects of Carey Reich and Adam Danielson.
- 2. Results on: (i) MZO/CdSeTe interface, (ii)bulk absorber and doping, (iii)back interface and (iv) back contact. Data from optimum process conditions are presented.

Tracking recombination losses – MgZnO Interface

Baseline structure

Data here presented in: https://doi.org/10.1016/j.solmat.2021.111388

JV shows insignificant differences between devices CBO has little effect on V_{oc}, recombination as measured by ERE and TRPL Average lifetime~55 nsec, S front ~10 cm/sec

Tracking recombination losses – Bulk structure

Reduction of implied voltage deficit by removal of Cu doping step and by use of only longer lifetime CdSeTe – total improvement of deficit from baseline ~115 mV. Higher lifetime in CdSeTe seen by CL and DFT modeling, only Te and no back electrode.

As Doping Results: CV/SIMS

Arsenic activation exceeds 25%

Arsenic Doping Mechanism

Arsenic / clusters/complexes, mostly Asi-Aste complex Arsenic diffusion occurs from as-deposited layer to front CdSe_xTe_{1-x} layer during CdCl₂ treatment *

Only As_i is capable of diffusing into front CdSe_xTe_{1-x}

• Higher carrier concentration with CdSeTe than CdTe

- Graded doping profile
 - induces upward band bending in "diffused" CdSe_xTe_{1-x} layer
 - Electron reflector
- As-deposited layer retains defects/complexes
 - Low doping activation
 - Recombination prone area

*-Cu doping will not survive CdCl2 treatment

Results: TRPL/ERE

Full Devices

Arsenic doping yields higher lifetime, ERE than Cu

Tracking recombination losses – Rear Surface

Device Structures

Not to scale

Just Films, not devices

Tracking recombination losses – Rear Surface

- Te contact is detrimental to implied voltage due to it's large SRV, as suggested by comparison to a known passivating surface
- No intentional back layer was better than expected
 - TeO_x shown to passivate interfaces and can form in air [10.1109/JPHOTOV.2018.2870139, 10.1002/solr.202100173, https://doi.org/10.1016/j.solmat.2014.10.044]

Tracking recombination losses – Rear Surface

 $\text{TeO}_{\rm x}$ is measured after 2 weeks dry air exposure on both CdTe and CdSeTe surfaces

Tracking recombination losses – Rear Surface

- ERE increases in correlation with TeO_{x} fraction after air exposure
- ERE measured from the front and back are in good agreement for CdSeTe – difference in bilayer likely due to CdTe bulk recombination

Implied JV

Implied voltage of ~1 V and Implied Efficiency of > 25%* with CdSeTe-only absorber (*-corrected for sub Eg emission, 26.5% without correction)

CONCLUSIONS

- 1. MZO/CdSeTe interface has low surface recombination (S estimated ~10 cm/sec).
- CdSeTe-only absorber has the highest lifetime to date (>4 microsecond)
- 3. Native TeOx layer passivates back surface (S estimated~10 cm/sec, order of magnitude estimate).

NEXT STEPS

- 1. Device modeling results show low hole mobility in CdSeTe. Improve hole mobility by processing.
- 2. Optimize As doping without defective as-deposited layer at the back.
- 3. Optimize the TeOx. Explore processing of TeOx than just native growth.
- 4. Device simulations suggest hole contact with conduction band above that of the absorber needed.

REFERENCES

- Onno, A., Reich, C., Li, S., Danielson, A., Weigand, W., Bothwell, A., Grover, S., Bailey, J., Xiong, G., Kuciauskas, D., Sampath, W.S., Holman, Z.C., Understanding what Limits the Voltage of Polycrystalline CdSeTe Solar Cells, *Nature Energy* (2022)
- A. Onno, A. Danielson, C. Reich, A. Kindvall, W. Weigand, A. Munshi, S. Li, D. Kuciauskas, W. Sampath, Z. Holman, Calculation of the Thermodynamic Voltage Limit of CdSeTe Solar Cells. *2020 IEEE PVSC Conference Proceedings*
- Rau, U., Reciprocity Relation Between Photovoltaic Quantum Efficiency and Electroluminescent Emission of Solar Cells, *Phys. Rev. B* (2007)
- Steiner, M. A., Geisz, J. F., Garcia, I., Friedman, D. J., Duda, A., Kurtz, S. R., Optical Enhancement of the Open-Circuit Voltage in High Quality GaAs Solar Cells, *J. Appl. Phys.*, (2013)
- Miller, O. D., Yablonovitch, E., Kurtz, S., Strong Internal and External Luminescence as Solar Cells Approach the Shockley-Queisser Limit, *IEEE J. Photovolt.* (2012)
- Guillemoles, J. F., Kirchartz, T., Cahen, D., Rau, U., Guide for the Perplexed to the Shockley-Queisser Model for Solar Cells, *Nature Photonics* (2019)
- Wurfel, P., The Chemical Potential of Radiation, J. Phys. C: Solid State Phys. (1982)

ACKNOWLEDGEMENT

Collaborators: ASU, NREL, WSU and UIC

Research Support: DOE-SETO, NSF I/UCRC

Industrial Sponsors: FSLR, CTF Solar, Toledo Solar, 5N Plus, HB Fuller, DOW Chemicals

Questions?