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   Part I: DFT Modeling + ML for Defect Property 
Prediction 
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Density Functional Theory + Machine Learning 

Arun Mannodi-Kanakkithodi & Maria Chan, “Computational Data-Driven Materials 
Discovery,” Trends in Chemistry 3, 79 (2021) mchan@anl.gov 

mailto:mchan@anl.gov


Predicting properties of defects 
Semiconductor + impurity • Pb Substitution in 

MAPbBr3: Chem. 
Mater 2019. 

• Cd chalcogenides: 
npj Comput. Mater 
2020. 

• Primer: Trends in 
Chemistry 2021. 

• All zinc blende 
semiconductors: 
Patterns 2022. 

• With corrected DFT: J 
Chem Phys 2022 

• Halide Perovskites: 
Journal of Materials 
Science 2022. 

• 
• 
• 

Density Functional Theory (DFT) 
• Ef(q) = E(Dq) – E(bulk) + ∑niµi + q(EF+Evbm) + Ecorr 

• Impurity levels: 𝜀𝜀(q1/q2) = [ Ef(q1) - Ef(q2) ] / (q2-q1) 

-1/-2 +2/+1 Impurity levels 
𝜀𝜀(q1/q2): 

Fermi energies 
(EF) where defect 
transitions from 

one stable charge 
state (q1) to 
another (q2) 

Descriptors (X) 
Elemental 
properties of M 
Coordination 
environment 
Unit cell defect 
calculations 

Machine Learning 
• Linear correlation coefficients between X and P 

• Regression (eg. random forest) model  P = f(X) 

Expensive DFT 
Computation 

ML prediction 
On-demand 

mchan@anl.gov 
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Accuracy of DFT defect levels? 
Experimental and DFT values  from 
literature 
CdTe ↓, all zinc blende semiconductors 

RMSE: PBE: 0.22 eV, HSE: 0.35 eV mchan@anl.gov 

mailto:mchan@anl.gov


  

 
 

  
 

 
 

 

  
 

 
    

+unit cell (8 atom) Descriptors for Machine Learning defect calculations 

Computed Impurity/Defect M in 
properties of 

semiconductor AB 

Tabulated Defect coordination 
elemental environment 

properties of (Coulomb Matrix) 
defect atom 

Mj = ZX* Zj / RX-j 
• Sum over bonds within cutoff 
• Sum over N nearest neighbors 

Tabulated elemental 
properties of atom A 

Tabulated elemental 
properties of atom B 

Semiconductor AB A 
B 

M 

mchan@anl.gov 
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Correlation between predictions and descriptors 

Unit cell defect calculations mchan@anl.gov

 



Training curves 

Formation 
energies 

Defect 
levels 
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Energies (CdS/Se/Te) – Random Forest Regression 
∆H (Cd-rich) (eV) ∆H (X-rich) (eV) 

CdTe 
RMSE 

CdSe Training: 0.30 eV 
Test: 0.40 eV CdS Outside: 0.55 eV 

mchan@anl.gov 
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Defect Levels (CdS/Se/Te) – Random Forest Regression 
RF Model to predict 𝜀𝜀(q1/q2) (eV) Out-of-sample prediction 

Test RMSE: Outside RMSE: 
0.30 eV 0.35 eV 

CdTe 

CdSe 

CdS 

mchan@anl.gov 1 
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Screening of dopants 

Arun Mannodi-Kanakkithodi, Michael Y. Toriyama, Fatih G. Sen, Michael J. Davis, Robert F. Klie, and 
Maria K. Y. Chan, “Machine-learned impurity level prediction for semiconductors: the example of 
Cd-based chalcogenides,” npj Computational Materials 6, 39 (2020) 
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Screening of dopants 

Arun Mannodi-Kanakkithodi, Michael Y. Toriyama, Fatih G. Sen, Michael J. Davis, Robert F. Klie, and 
Maria K. Y. Chan, “Machine-learned impurity level prediction for semiconductors: the example of 
Cd-based chalcogenides,” npj Computational Materials 6, 39 (2020) 
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Screening of dopants 

Arun Mannodi-Kanakkithodi, Michael Y. Toriyama, Fatih G. Sen, Michael J. Davis, Robert F. Klie, and 
Maria K. Y. Chan, “Machine-learned impurity level prediction for semiconductors: the example of 
Cd-based chalcogenides,” npj Computational Materials 6, 39 (2020) 



  
 

 

  

   Extend to all zinc-blende semiconductors 

Total chemical space of 
impurities: 77 elements 
* 5 defect sites (or 3) * 
34 (II-VI, III-V, IV-IV) 
semiconductors = 
~ 12,000 points. 

Zinc Blende structure is 
used for every 

compound. 

mchan@anl.gov 
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Descriptor Function and Reduction 
 Descriptors show different correlations 

to quantities of interest 
 Functional dependence on descriptors 

is unknown 
 SISSO (sure independence screening 

and sparsifying operator) technique 
used (Ouyang et al, Phys. Rev. Mat. 
2018) 
 Form functions (power, exponents, etc) 

of descriptors, and then use LASSO to 
reduce dimensions 

mchan@anl.gov 
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  All Chemistries: Shallow Neural Networks 

mchan@anl.gov 
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Online Tool for Prediction from ML Models 
Allows rapid evaluation of different combinations 

Arun Mannodi-Kanakkithodi, Xiaofeng Xiang, Laura Jacoby, Robert Biegaj, Scott Dunham, Daniel Gamelin, 
Maria Chan, “Universal Machine Learning Framework for Defect Predictions in Zinc Blende 
Semiconductors”, Patterns 3, 100450 (2022). 



Conclusion: DFT+ML for Defects 
 DFT gives a reasonable prediction of 

defect levels in CdTe. 
 ML models trained on DFT calculations 

used to predict formation energies and 
charge transition levels of impurities in 
Cd(Te,Se,S) and later to all zinc blende 
semiconductors. 

 Such models can be used to screen 
dopants 

 Expensive+more accurate DFT 
calculations can be reasonably 
approximated by cheap DFT calculations 
+ ML. 

mchan@anl.gov 
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Part II: AI/ML+modeling guided interpretation of 
microscopy & spectroscopy data 



 

 
  

 

 Understanding grain boundaries in CdTe 
Moon Kim 
Univ. 
Texas 
Dallas 

Bicrystal
fabrication 

Overview 

Opto-electrical
measurements 

3d model 

SunShot 
PVRD 
CdTe 
GBs 

DFT 
modeling 

Maria Chan 
Argonne Natl Lab 

Robert Klie 
Univ. Illinois 
Chicago 

STEM 
imaging 

2d image
mchan@anl.gov 
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   Inversion of characterization data 

Synchrotron x-ray 

signal or 
2d images 

??? 

Electron 
microscopy 

 Invert characterization data to get structures 
(with theoretical modeling as guidance/constraints) 

Structure: 
Bulk crystals 
Interfaces 
Surfaces 
Nanostructures 

Atom probe 
Laser 
etc. 



mchan@anl.gov
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INGRAINED – simulated and experimental
STEM/TEM/STM image matching 

• Have: microscopy image; Want: matching simulated image 
• Scope: electron microscopy, scanning probe microscopy 
• Challenge: image varies with simulation parameters 
• Approach: use computer vision measure for image 

similarity and automated searching 

• Eric Schwenker 
• Chaitanya Kolluru 

E. Schwenker, V. S. Chaitanya Kolluru, J. Guo, X. Hu, Q. Li, M. C. Hersam, V. P. Dravid, R. F. Klie, J. R. Guest, M. K. 
Y. Chan, “Ingrained: an automated framework for fusing atomic-scale image simulations into experiments,” 
arXiv:2105.10532, Small (accepted) 2022 



 
 

      

    

 

Ingrained – STEM results 
Examples of initial structures generated 
Optimal correspondence between boundaries of bulk segments. FANTASTX will optimize structure of the interface! 

CdTe (100)-(110) NMC battery materials 

Nature Energy, 20221-VIFP: 0.799 
Appl. Phys. Lett. 115, 153901 (2019) mchan@anl.gov 

mailto:mchan@anl.gov


  
 

   

 
   

    

 

    
 

FANTASTX – characterization data inversion 
through structure search 

• Have: characterization data; Want: nanoscale atomistic 
structure 

• Scope: X-ray, electron microscopy, scanning probe 
• Challenge: non-unique mapping, underconstrained space 
• Approach: use physics (Hamiltonian) to constrain solutions 

FANTASTX – Fully Automated Nanoscale To Atomistic Structure from Theory and eXperiment 
• Chaitanya Kolluru 
• Davis Unruh 
• Zisheng Zhang 
• Previous: Spencer Hills, Eric 

Schwenker, Fatih Sen mchan@anl.gov 24 
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FANTASTX 
Fully Automated Nanoscale To Atomistic Structure from Theory & eXperiment 

Computer vision 
image comparison 

DFT data 

Energies 
S/TEM 

XRD/PDF/XR 
XAS/EELS 

Match to 
experiments 

Genetic algorithms 
Basin hopping 

Monte Carlo 

DFT 
Interatomic 
potentials Potential 

parameters fit to 



Structural models allow materials design 
STEM image Dislocation core Electronic structure 

model (DFT) 

Recombination 

Screen through passivants 

Reduced 
recombination 

 
    

  

 

     
            

    

Fatih G Sen, Arun Mannodi-Kanakkithodi, Tadas Paulauskas, Jinglong Guo, Luhua Wang, Angus 
Rockett, Moon J Kim, Robert F Klie, Maria KY Chan, “Computational design of passivants for CdTe 
grain boundaries,” Solar Energy Materials and Solar Cells 232, 111279 (2021) 



Two types of dislocation cores from model   



 Different origin of mid-gap states 



 Different passivation/co-passivation 
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X-ray absorption spectra X-ray absorption/emission spectra 
 Goal: determine structural/electronic descriptors from 

spectra, specifically coordination number 
 Approach: 

– compute different configurations using DFT 
– calculate spectra using different first principles- and Ab

so
rp

tio
n 

(A
.U

.) 

Energy (eV) 

NMC battery 

multiplet-based approaches and codes 
– Train ML model 

Li5FeO4 battery 

Dopant for 
CdTe solar 
cell 

Mariana Bertoni 
Liang Li, Arun Mannodi Kannakithodi, Justin Pothoof, Yiming Chen mchan@anl.gov 

mailto:mchan@anl.gov


Predicted vs ground truth coordination numbers  

    
 

  

 

Cu-Te for CdTe solar cell Li5FeO4 battery NMC battery 
# of neighbors of Cu # of Fe neighbors of O # of Li neighbors of Ni 

FEFF simulations OCEAN simulations FEFF simulations 
Neural network Neural network Random forest 

mchan@anl.gov 

mailto:mchan@anl.gov


   

  
 

 
    

   
 

Conclusion – AI/ML+modeling guided 
interpretation of microscopy & spectroscopy 
data 
 Need atomic structures to enable 

understanding/optimization of point and 
extended defects, processing, interfaces 

 Atomic structures also allow design of 
passivants 

 Used combination of modeling, AI/ML, 
and detailed characterization to 
determine structures 

 Developed general purpose software 
codes mchan@anl.gov 

mailto:mchan@anl.gov


 
  

 

 

 
  

   

 

  

MaterialEyes 
https://github.com/MaterialEyes 
Software tools 
• exsclaim – collect images from literature 

(Trevor Spreadbury, Eric Schwenker, Weixin 
Jiang) 

• fantastx – determine nanoscale structures 
from theory and experiments (Chaitanya 
Kolluru, Spencer Hills, Eric Schwenker) 

• ingrained – match simulated & experimental 
TEM/STM images (Eric Schwenker, 
Chaitanya Kolluru) 

• manipulatt – manipulate lattice structures 
(Joydeep Munshi) 

Dataset 
• atomagined – Simulated STEM dataset (Eric 

Schwenker) 
https://doi.org/10.18126/szeq-yde5 

mchan@anl.gov 33 
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The DOE Nanoscale Science Research Centers: 
User Facilities for Creating, Characterizing, and Understanding Nanomaterials 

About the Center for 
Nanoscale Materials: 
 Free access to staff 

expertise and equipment (if 
intent is to publish) 

 Three annual proposal calls; 
short-term projects are 
accepted continuously 

 Simple 2-page proposal 

 Co-located with Advanced 
Photon Source and 

Center for Nanoscale Materials Capabilities: 
 Synthesis – 2D materials, biofunctional structures, diamond/CNT, 

colloidal chemistry, self-assembly, quantum and energy materials 
 Nanofabrication – 11,000 sq. ft. cleanroom, direct-write fabrication, 

nonlinear phenomena, nanoscale interaction manipulation, device 
integration, NEMS/MEMS, flat lens optics 

 Advanced Microscopy – synchrotron hard x-ray nanoprobe, 
ptychography, AFM/STM (LT, SP, UHV, optical, synchrotron x-ray), 
aberration-corrected and in-situ TEM/STEM 

 Nanophotonics – ultrafast transient absorption and emission 
spectroscopy and microscopy; UV-to-THz 

Argonne Leadership 
Computing Facility 

 Theory/Modeling – electronic structure calculations, atomistic studies, 
electrodynamics, multiscale approaches, machine learning 

www.anl.gov/cnm mchan@anl.gov 

mailto:mchan@anl.gov
www.anl.gov/cnm
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