

Understanding CdSe in CdTe Devices

Kurt I. Barth Professor in Photovoltaics

Research Team: Rachael Greenhalgh, Ali Abbas, Vlad Komienko, Xiaolei Liu, Jake Bowers, and Mike Walls Centre for Renewal Energy Systems Technology Loughborough University

> Tushar Shimpi and W. S. Sampath Colorado State University

Ebin Bastola, Adam Philips, and Michael Heben University of Toledo

Loughborough PV Research

Housed in the Centre for Renewable Energy Systems Technology (CREST)

- CREST: 60 Staff, students
- 30 funded programs each up to £3M

Increasing Efficiencies

- Doped, stable front emitter
- Enhanced group V doping and activation
- Optimized back contact / buffer
 - Back passivation

Advanced Device

- Bifacial designs
- Durable anti-reflection / anti-Soiling coatings
- Fundamental understand via characterization and DFT simulation

PV Team

- 5 Academics
- 5 Professional Research Associates
- 12+ Ph.D. Students

- Xe FIB, EBSD cross section technique
- Devices with CdSeTe alloy film deposition
- Devices with CdSe

 CdCl₂ and diffusion
- Cathodoluminescence

CdSeTe / CdTe Devices

- Bandgap grading

 CdSeTe alloy can be have Eg
 - between 1.38 eV 1.5 eV
- Passivates defects in bulk
 - Shown through improved CL intensity [1]
- Increases carrier lifetime

1: Nature Energy 4, no. 6 (2019)

Introducing Se in CdTe solar cells

Either CdSe or CdSeTe deposited followed by CdCl₂ used to form absorbers

Loughborough University

Characterization: Advanced EBSD

CREST

- Ion mill chunk, lift out onto a Si wafer
- 50nm thick, fiducial markers for alignment
- Xe FIB
 - Rapid, minimized FIB damage

EBSD: 350 micron wide area (continues off slide)

~ 2 hours from cell sample to images and EBSD analysis Xe FIB is enabling

Devices with CdSeTe Film Deposition (then CdCl2)

CREST

Absorber from CdSeTe / CdTe films (post CdCl₂)

Device	PCE (%)	Voc [mV]	Jsc	FF [%]	Condition
1 (1592-10)	18.76	873	27.4	78.5	Thin CdSeTe, yielded larger mixed alloy layer, random texture
2 (1592-9)	17.22	828	27.4	75.8	Thicker CdSeTe, thinner CdTe
3 (1673-2)	17.33	851	26.9	75.7	Thinner CdSeTe, Insufficient CdCl2

111 texture orientation seen with insufficient CdCl₂ treatment, lower performance

Device: 120 nm CdSe (evaporated)/CdTe then CdCl₂ treatment

- All CdSe consumed during CdCl_{2.} Mixed alloy CdSeTe formed
- Generally random texture
- All cubic phase
- Similar to CdSeTe film dep

CREST

Device: 400 nm CdSe (evaporated)/CdTe, then CdCl₂ treatment

- Hexagonal CdSe remaining
- Poor efficiency : 6.1 %, with low Jsc

Insufficient CdCl₂ damaging with CdSe films Rapid EBSD can help optimize chloride process

Absorber from CdSe films

Device: 400 nm CdSe (evaporated)/CdTe, then CdCl₂ treatment

Chlorine present in the CdSe (and CdSeTe) grain boundaries

EQE CdSe / CdSeTe device

Loughborough

CdSe present at the front of the device causes:

- parasitic absorption (optical effect), Eg: 1.74eV
- CdSe is n-type so there is the electrical effect of moving the p-n junction deeper into the device – 'buried junction' (electrical effect)
- Hexagonal structure of CdSe leads to poor carrier transport across cubic CdSeTe

Cathodoluminescence of CdSeTe: Se and Grain Boundaries

CL intensity (counts)

Fiducia, et. al., Solar Energy Materials and Solar Cells Vol. 238, 2022.

Grain boundary CL measurements

Low temperature CL along grain boundaries

CdSeTe: Higher CL than CdTe

CL measurements: Se passivates grain boundaries

Cathodoluminescence of treated CdSe

Loughborough

Device: 400 nm CdSe (evaporated)/CdTe, then CdCl₂ treatment

CL of UNTREATED CdSeTe / CdTe devices

Loughborough University

CL TEM Untreated CdSeTe/CdTe device prepared by Xe FIB

Some CL signal seen from CdSeTe without chloride treatment

CdSeTe: Significantly more signal than untreated CdTe

Poor crystalline quality of CdSeTe seen

Summary

Loughborough

CdSeTe precursor : Device performance impacted by combo of CdSeTe thickness and chloride treatment

- Thinner is better with moderate CdCl₂ (VOC/FF most impacted)
- Insufficient chloride with moderate CdSeTe film, leaves preferred 111 texture and reduced performance

CdSe precursor: Device performance very degraded with residual CdSe

- CdSe Hex/ n-type
- Aggressive chloride needed to form preferred mixed alloy (CdSeTe)

CI: CdSe (treated) has 50x signal of CdTe

- good device material?
- CdSeTe (untreated) has higher signal than CdTe

Capabilities developed

• Xe-FIB polishing / Large Area EBSD of cross sections

Acknowledgements

Loughborough

Loughborough University

Michael Walls Ali Abbas Vlad Kornienko Kurt Barth Xiaolei Liu Luksa Kujovic Luis Infante-Ortega Mustafa Togay Luke Jones Sibel Yilmaz Jake Bowers Peter Hatton Pooja Goddard Roger Smith Piotr Kaminski

University of Toledo

Ebin Bastola Mike Heben Adam Philips

NREL

Dave Albin Eric Colegrove Matt Reese

University of Swansea

Stuart Irvine Ochai Oklobia Kartopu Giray

Colorado State University

Walajabad Sampath Tushar Shimpi Jim Sites

Role of Chlorine: DFT Results

REST

CdCl₂ anneal is critical to high efficiency

- Anneal CdTe in CdCl₂, temp > 400 C
- Interdiffusion and grain growth seen

Hatton et. Al. Nature Communications 12, no. 1 (2021)

Chlorine at grain boundaries drives staking fault removal Passivates surfaces

Abbas, A., et. Al. IEEE PVSC 2015 Also See Munshi et. Al. Solar Energy Materials and Solar Cells 186 (2018)

CdCl₂ treated

Analysis:

TEM/EDS and

Cathodoluminescence

Cl in grain boundaries

CL with Transmission Electron Microscopy:

<u>Selenium passivates grain boundaries in alloyed CdTe solar cells</u>T Fiducia, A Howkins, A Abbas, B Mendis, A Munshi, K Barth, W Sampath, et al... Solar Energy Materials and Solar Cells 238, 111595 (2022)

Se Passivation

Nature Energy 4, no. 6 (2019)

- As-deposited device two distinct films: CdSeTe and CdTe
- Interdiffusion of Se during CdCl₂ heat treatment
- Cathodoluminescence (CL) correlation with Se content
- Increased CL signal: Higher quality absorber materials

Se passivates grain interiors

Resulting in higher lifetimes / performance

Interdiffusion of Se into absorber

SIMS Se map

- ~10% Se at the front interface
- Interdiffusion into 'CdTe' layer above following CdCl₂ heat treatment
- Se decoration around grain boundaries
- Diffusion primarily up grain boundaries, then out-diffusion into the bulk

Se passivates grain interiors

Resulting in higher lifetimes / performance

