

Progress Update on Thin-Film Metrology Systems

CdTe Workshop

Greg Horner, Kyle Lu

Tau Science © 2022

PixEL = EL, PL: Steady-state imaging

• TRPL Imaging, τ >=5 μ s

PulseQE = High speed Quantum Efficiency scanner IRIS = Hotspot imaging, LWIR Camera

→ Semi-custom systems

QE Scanner- Modules

CdTe & Perovskite Metrology in 2022

LAKEWOOD SEMICONDUCTORS, LLC

Work supported by DOE SBIR DE-SC0020718

Kyle Lu, Tyler Brau, Abasi Abudulimu, Jared Friedl, Mike Heben, Randy Ellingson, Adam Phillips, Greg Horner

<u>Goal:</u> Low cost TRPL system using TCSPC <u>Highlight:</u> Ease of use, automation, MES hooks <u>Target:</u> CdTe and Perovskites with $\tau > 1$ ns

First Step

Correlate to established TRPL system at UT

Work supported by DOE SBIR DE-SC0020718

TRPL: Perovskite Correlation Data

Time-Resolved Photoluminescence

8

THE UNIVERSITY OF

WRIGHT CENTER for PHOTOVOLTAICS INNOVATION AND COMMERCIALIZATION TRPL: Perovskite Correlation Data

TRPL: CdTe Correlation Data

Time-Resolved Photoluminescence

Understand & Improve CdTe TRPL correlation w/ U Toledo

Add automation:

Spotsize & injection ratio autocal (Z-stage) XY stage for mapping spatial non-uniformities Improved curve fitting algo's

Improved time resolution $3ns \rightarrow 500ps$

Add EL/PL Imaging: Navigate TRPL beam wrt live PL image Coupon contactor for EL

→ Beta Machine Q2 2023

Spin-coated perovskite

From 2022 Chicago CdTe Workshop

Parsing Voltage Losses in CdSeTe Solar Cells: Drafting a Pathway to Reach $V_{oc} = 1 V$

<u>Arthur Onno</u>,^{1*} Carey Reich,² Adam Danielson,² Alexandra Bothwell,³ Siming Li,³ Mason Mahaffey,¹ William Weigand,¹ Walajabad Sampath,² Darius Kuciauskas,³ and Zachary C. Holman¹

> ¹Arizona State University ³Colorado State University ³National Renewable Energy Laboratory

*arthur.onno@asu.edu

External Radiative Efficiency

https://doi.org/10.1038/s41560-022-00985-z

() Check for updates

ARTICLES

Understanding what polycrystalline CdSe

Arthur Onno¹[™], Carey Reich², Siming L Alexandra Bothwell³, Sachit Grover⁴, Jeff Walajabad Sampath² and Zachary C. Hol

Arizona State University Colorado State University NREL First Solar

External Radiative Efficiency (ERE)

Currently negotiating commercial agreement w/ ASU

Arthur Onno, Zach Holman, Mason Mahaffey *et al*

Measure ERE vs. Illumination: reconstruct the "internal" J-V curve of the absorber

 \rightarrow Implied efficiency, FF

ASU- Stay tuned for 2023 publications: Doping Lifetime

Tau Science- Develop into commercial system Beta system in Q2'23 ERE + Doping + Lifetime Implied I-V analysis Conventional I-V sweep Automation!! XY stage, autocal, sample holders, MUX...

Demonstration of combined measurement of ERE and lifetime on CdSeTe absorbers

Demonstration of doping measurement on CdSeTe absorbers

Holman Research Group

Comments, Questions, Collaborations are welcome!

Greg Horner Ghorner@tauscience.com

Steady-State Microwave Photoconductance ~ $QE^*\mu^*\tau$

Perovksites Inline Sensor for QC 90 TERM Hybrid 180 **Bryon Larson (NREL)** Hybrid TERM **Obadiah Reed (CU, NREL)** (a) :F (%) R = 0.36 R = 0.61 DVM Input (c) (d) 20 1.0 Lock-In Ref **High Power LED** PC 0.8 Amplifier Voc (V) PCE (%) LIA 10 0.4 Tau Science µ-wave reflectance 0.2 R = 0.36R = 0.52100 150 200 250 300 350 400 100 250 300 350 400 SSMC (n SSMC (nV) 0000 sample E

P-i-N architecture, *different fabrication humidity*

1/2 stack

