Modeling of CdSeTe device properties and operatio

Dmitry Krasikov First Solar Senior Member of Dmitry.Krasikov@first

Outline

- What do we model? (snapshots of stabilized device)
- 1D model features
- Losses of V_{oc} and P_{mp} at contacts
- Some signatures of $V_{oc}(T)$, FF(T)
- Prospects of thin absorber

Mind the device state

Stress (T, light, V) \rightarrow <u>device state</u> \rightarrow V_{oc}(T), FF(T)

- Stabilize device state (SC ≠ MPP ≠ OC)
- Beware of dark soak
- Do not compare different devices in different states

Measure IVT

Stress (T, light, V) \rightarrow device state $\rightarrow V_{oc}(T)$, FF(T)

- IVT bears lots of physics
- IVT preceded by stabilization
- IVT is fast (snapshot of state)

2023 Copyright First Solar, Inc.

Model of a stack

- Mapping problem to 1D
- Lots of unmeasurable parameters
- Most critical parts:
 - Front IF
 - Absorber
 - Back IF

CdSeTe absorber with graded Se

- Compensated doping: net doping = [A]-[D]1.
- 2. Non-shallow acceptors: $h^+ <<$ net doping
- 3. Temperature-dependent hole density
- 4. Higher Se%: Affinity \uparrow , $E_g\downarrow$, VBM \downarrow , deeper acceptors ($p^+\downarrow$)

7

Effective 1D model of front interface

Main IF parameters:

- Conduction band offset (CBO)

 affected by orientation, termination, defects at IF
- Charged defects (acceptors at front IF)
 acceptors tend to accumulate where e⁻ density is high
- 3. Recombination centers (SRH-like traps)

CBO from first principles

- Large negative CBOs predicted
- Worse IF with Te terminated CdTe (i.e. more negative CBO)

ront interfa

Fitted device model

- > Device model fit to $V_{oc}(T)$, FF(T) data
- 4 sifferent devices: qualit. similar models
- Large fitted CBO values: -0.38...-0.53eV

Front interface: strongest loss at OC

- CBM "spike" under forward bias
- Strong recombination and some e⁻ retainment under forw. bias
- \succ J_e is against E-field at MPP

Front interface: strongest loss at OC

iV_{oc} loss up to 70mV due to front IF recombination (iV_{oc} is not indicative of absorber quality only!)

Solar, Inc

ront interfa

Back interface: strongest loss at MPP

- Downwards band bending near BC
- \succ J_h is against E-field at all conditions
- \succ Some iV_{oc} loss at BC
- > Slow h⁺ extraction \rightarrow qFL_h loss at MPP (FF loss)

Device operation and losses

- Estim. of loss at contact: recomb. rate + qFL loss
- > V_{oc} loss: mostly at front contact (more h⁺ at Fl under OC → higher recomb.)
- P_{mp} loss: strong loss at BC (due to slow h⁺ extraction)

V_{oc}(T),FF(T) signatures

$V_{oc}(T)$, FF(T):

- bear signatures of device operation
- restricts interpretation of IV data
- facilitate comparison of devices
- helps diagnose device failure

First Solar Proprietary & Confidential - General

Model: thickness vs Se profile vs BSRV

- 2µm is feasible with right Se profile even w/o BSRV↓
- Very high bifaciality with BSRV

Back up slides

Graded CdSeTe absorber

In high-Se CdSeTe alloy:

- 1. ~0.1eV lower E_g (more light absorbtion)
- 2. ~0.2eV higher electron affinity¹ (smaller CBO with TCO, add-I grading for carrier separation)
- 3. Lower doping² (deeper acceptors, higher acceptor formation energy, both for Cu and As)
- 4. Seom evidences of lower recombination³ despite lower E_g and deeper acceptors (not fully clear why)

[1] Yang, Wei, Chinese Physics B 28 (2019) 086106
[2] Sankin, Krasikov, Phys. Status Solidi 216 (2019), 1800887
[3] Fiducia et al., Nature Energy 4 (2019) 504

First-principles-calculated thermodynamic ionization levels		
	Cu _{Cd} (0/-1) ioniz. level	As _{Te} -/AX ⁺ ioniz. level
CdTe	0.18 eV	0.14 eV
CdSe _{25%} Te _{75%}	0.20-0.22* eV	0.16-0.23* eV
*Depending on local Te/Se surrounding		

LEADING THE WORLD'S SUSTAINABLE ENERGY FUTURE