

CdTe Workshop

Fabrication and Characterizations for Efficient CdTe-based Solar Cells at University of Toledo

Deng-Bing Li 10/19/2022

Wright Center for Photovoltaics Innovation and Commercialization (PVIC)

Collins Group	Ellingson Group	Heben Group	Podraza Group	Yan Group
Optical Spectroscopies: Ellipsometry	Optical Spectroscopies: PL, TRPL, TA	Production and Grid Integration Instrument Development	Optical Spectroscopies: Ellipsometry	Solar Cell Fabrications CdTe, Perovskite
Solar Cell Fabrications:	Device fabrication Bifacial Solar cell	Device Fabrication and Characterization	Linpsonietry	DFT Calculations
	back contact material			Electrical Characterizations
Off-Campus Collaborator	s Fund	ling Support		Substrate Supply

Prof. Feng Yan in University of AlabamaDr. Chuanxiao Xiao and Chunsheng Jiangfrom NRELDr. Jonathan D. Poplawsky and David A. Cullerfrom ORNL

Roadmap for High Efficiency Solar Cells in UT

Back Surface Etching-15% Sol. RRL 3(2019), 1800304

ZMO Conductivity-16.1% ACS Appl. Energy Mater. 2(2019), 2896–2903 Prog. Photovolt. Res. Appl. 27(2019),1115–1123

Cu Engineering-17.5% Nano Energy 73 (2020) ACS Appl. Mater. Interfaces 2021, 13, 38432–38440

Se incorporation-20% unpublished

Ex-situ GrV Doping-18%, collaborate with Prof. Feng Yan in UA Nature Energy volume 6(2021), 715–722

> Ultra Thin CdSeTe Solar Cells

- Se Incorporation
 Se Incorporation
 Se Bifacial CdTe Solar Cells
- IGO Emitter Exploration
- > New Capability in UT

Minimize Cu concentration and optimal distribution are required to maximize the hole density and device performance in CdTe

Improved Stability

- More substitutional Cu_{Cd} can be observed from low temperature PL spectra and less expected Cu_i and other compensatory defects can be expected.
- Higher device stability than traditional can be achieved with this Cu engineering strategy

CuCl as dopant

CuSCN as dopant + Hole transport layer

Materials 13(2020), 1991; Prog. Photovolt. Res. Appl. 2019;1–8

Se Incorporation

APPLIED PHYSICS LETTERS 105, 183510 (2014)

Enhancing the photo-currents of CdTe thin-film solar cells in both short and long wavelength regions

Naba R. Paudel^{a)} and Yanfa Yan^{b)}

Department of Physics and Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, USA

Se Incorporation

20% PCE was successfully demonstrated with the Cd(Se,Te) region with composition and bandgap gradient.

Jamarkattel et al. ACS Appl. Energy Mater. 2022, 5, 5484–5489 12

TEC 12/IGO/CdSe/CdTe/CuCl₂/Au

In comparison to MZO, fabrication is less sensitive to P_{O2}

Willow $^{\circ}$ Glass (100 μ m)/ Cd₂SnO₄/IGO/CdSe (90 nm) /CdTe

- Larger bandgap of IGO (4.1 eV) is needed for Cd₂SnO₄/IGO/CdSeTe
- May be due to chemistry at Cd₂SnO₄/IGO interface
- 16.1% on Willow is very close to the record*

* 16.4% by Mahabaduge et al, Appl. Phys. Lett. 106, 133501 (2015)

Average/Max PV parameters

Sample	Voc (mV)	Jsc (mAcm ²)	FF (%)	PCE (%)
4.02 eV IGO	756/760	27.8/27.9	73.7/74.6	15.5/15.85
4.1 eV IGO	790/ <mark>795</mark>	26.8/ <mark>27.3</mark>	73.5/74.1	15.6/16.13

Ultra-thin CdSeTe Solar Cells

samples	V _{OC}	J _{SC}	FF	PCE	R _S	R _{SH}
-	(V)	(mA/cm ²)	(%)	(%)	$(\Omega \cdot cm^2)$	$(\Omega \cdot cm^2)$
1.2um	0.756	22.9	53.0	9.18	11.8	556
1.8um	0.853	26.0	80.6	17.9	3.1	2215
2.4um	0.868	27.3	79.9	18.9	2.8	1194
3.6um	0.861	28.2	79.9	19.4	1.3	1760
4.2um	0.881	28.4	76.7	19.2	2.1	1241

1.2µm

Towards viable bifacial CdTe-based PV: ITO as back electrode

Performance data of bifacial CdTe/CdS solar cells (solid and dotted lines correspond to back and front illumination, respectively). Reference corresponds to a Cu-doped device with ITO contact, and $Cu_x Cr_y O_z$ refers to the device with buffer and ITO back contact. (a) J-V characteristics, and (b) EQE.

Bifacial – notes and next steps

- Identify composition and structure of (CdClOx?) platelets, which correlate with improved back-illuminated performance → material of interest as passivant. Removing platelets w/ HCl etch kills back-side performance.
- Challenges associated with CdSeTe film stack, and achieving simultaneous high PCE and good bifaciality.
- Move to As-doped CST brings new challenges and opportunities (stay tuned).

New capability: ERE mapping

(thanks to ASU for early help: Ohno/Holman/Zhang)

CH₃NH₃I "etch" + Cu:ZnTe

Combinatorial investigations (off-axis co-evap of CdTe /CdSe)

First Solar: 22.1%

UT can further improve its contribution to CdTe community and advance the CdTe photovoltaic technolodgy!

Thank You for Your Attention!

Questions?

There are other advances going on at UT and you are encouraged to talk individually to PVIC faculty/students!

Prof Collins: <u>robert.collins@utoledo.edu</u>; Prof. Ellingson: <u>randy.ellingson@utoledo.edu</u>; Prof. Heben: <u>michael.heben@utoledo.edu</u>; Prof. Podraza: <u>nikolas.podraza@utoledo.edu</u>; Prof. Yan: <u>yanfa.yan@utoledo.edu</u>.