Table of Contents

Wednesday, October 25th, 2023 - Industry Updates

Michael Heben – Update on US-MAC & CTAC Bill Huber – First Solar Update Shannon Jurca – Update on NSG Activities in Glass for Solar Jim McCamy – Vitro Update Alexander Dmitriev – Update on Toledo Solar Anna Kindvall – Update on CdTe Module Manufacturing at CTF Solar Jim Crimmins – CFV: 10 years of commercial PV lab CdTe testing - a retrospective Cory Perkins – Update from nexTC Amit Munshi – JPHB: CdTe/Perovskite Tandems and EOL c-Si Recycling Greg Horner – Tau Science: Search for non-contact analogs to QE measurements Kurt Barth – Direct Solar: Company Activities and Capabilities

Thursday, October 26th, 2023 - Technical Sessions

Yong-Hang Zhang, Arizona State University – Ultra thin CdTe solar cells John Michael Walls, Loughborough University – 21.44% efficient CdSeTe/CdTe solar cells using highly resistive intrinsic ZnO buffer layers Dingyuan Lu, First Solar – Progress and future directions of CdTe devices Bill Shafarman, University of Delaware – Antimony-doping approaches for Vapor Transport CdSeTe Dmitry Krasikov, First Solar – Detailed physical modeling for prompt actionable feedback to process development Marco Nardone, Bowling Green State – University Voc loss analysis: combining simulation with characterization Amit Munshi, Colorado State University – Investigating the Role of Grain Boundaries and Interfaces in px-CdTe Photovoltaics Robert Klie, University of Illinois, Chicago – Characterizing hetero-interfaces at high spatial resolution using scanning transmission electron microscopy Mike Scarpulla, University of Utah – Surface photo voltage for assessing hole contacts Jim Sites, Colorado State University – Extraction of Key Metrics to Help Track Cell-Level Progress Brion Bob, Solar Energy Technologies Office – Forces Influencing the Future of CdTe PV

Welcome to the 7th Annual CdTe PV Workshop October 25 – 27, 2023 National Renewable Energy Laboratory

US-MAC

- ad hoc organization, with the following mission:
 - Leverage resources, stimulate R&D investment, and accelerate innovation.
 - > Cut cost in half in 5 years, extend solar panel life from 25 to 50 years.
 - > Reduce CapEx and increase rate of production with new processes.
 - > Meet all U.S. PV demand and enable export across the world.
 - New markets for rooftops, building integration, defense applications, & solar everywhere

Self organized in 2018 – 2019, MOU signed in 2021

13 Companies, 5 Universities, NREL Hot Topics

CTAC

- Formed by DOE/SETO's Photovoltaics Program in 2022.
- Managed by NREL :
 - Support the planning/operations of a technology development consortium to enhance U.S. technology leadership and competitiveness in CdTe PV
 - Enable cell efficiencies above 24% and module costs below \$0.20/W by 2025 Enable cell efficiencies above 26% and module costs below \$0.15/W by 2030 Maintain or increase domestic CdTe PV material and module production through 2030.
- Initial award for \$9 M (CSU, FSLR, Siva Labs, Tol. Solar, UToledo + \$1.7 M for NREL
 - Two additional \$2 M supplementary RFPs to date
 - Third \$2 M RFP is expected soon

Additional R&D funding from SETO's Manufacturing and Competitiveness Program
 Overall, CdTe R&D Funding has grown ~3X since 2018

Road to 100 GW_{DC}/yr

First Solar Update

Bill Huber Head, Advanced Research

October 25th, 2023

First Solar

 >20 years of thin film PV leadership

- 1st company:
 - < \$1/W
 - > 1 GW installed
 - Global module recycling
- Lowest carbon footprint

Today

Customer Demand

25GW+ of Annual Manufacturing Capacity by 2027

Ohio, USA

Expansion Expected Finished 2024

Kulim, Malaysia

Operational 2008

Dong Nam, Vietnam

25 GW/yr →

8.3 Million / year

Research & Development Center (RDC)

Under construction (2024)

- Largest PV R&D innovation center in Western Hemisphere
 - 1.3 m ft2 15 soccer fields
 - > \$300 M investment
 - **24/7**
- Fully automated; flexible.

• Supports CdTe roadmap & future tandem.

Ramping Bifacial CdTe

- ✓ 15-20% BiFi at launch.
 - Path to 50+%.
- ✓ Minimal power loss.
 - TCO sheet rho.
- ✓ Lower operating temperature.
- ✓ Same excellent stability/reliability. 🖁

New CuRe Record: 22.4%

CuRe enables thin CdTe

- Comparable efficiency.
- Reduced CdTe thickness.
- BiFi > 30%

Challenges Remain

Confocal PL

Film Side

X-Position (um)

10 15

Se %, film side

Back interface passivation doesn't survive ZnTe

Significant Se, As non-uniformity even w/high efficiency devices 8

6

Needs from CdTe Community

- Passivated back contact.
- Improve understanding of interfaces & Voc loss.
- High As activation in poly-CdTe.
 - Stop working on Cu.
- Leverage FSLR for device integration/testing.
- Grow CdTe community.

LEADING THE WORLD'S SUSTAINABLE ENERGY FUTURE

GROUP

Introduction to NSG Today

- One of the world's largest manufacturers of glass and glazing
- Principal operations around the world, with sales in over 100 countries 27 float lines worldwide
- Approximately 26,000 employees globally
- Consolidated Revenue JPY600.6bn (2022/3)

Contributing to society with a variety of glass products

PILKINGTON NSG and Solar Activities

Acceleration of the shift from commodity glass to value-added products

Strengths and Functions of Online Coating

- NSG's proprietary technology
- Seven float lines with online coaters globally
- Thin, uniform metallic oxide film deposited over glass while being formed inside the float bath
 - Cost competitive, available in large size
 - Durable and versatile, suitable for further processing and various applications

Function	Use	
Conductivity	Heating glass	
	Transparent conductive film for touch panels	
	Transparent conductive film for thin film solar panels	
Infrared reflection	Heat insulation glass	
	Heat blocking glass	
	Low e glass	

↑ Glass for thin film Solar panels Courtesy of First Solar Inc.

↑ Glass for electrochromic applications Courtesy of View Inc.

Solar Opportunities Outside CdTe

GROUP

- NSG focusing on a number of Thin Film PV opportunities for TCO/Glass
 - Dye-Sensitized Solar Cells achieve sufficient power from dim/internal lighting to act as battery replacement cells in IoT devices
 - <1.6mm TCO/Glass requirement
 - Organic PV provides opportunity for Building Integrated PV (BIPV)
 - Tuned to absorb in IR and UV
 - No visual impact from silicon wafer systems
 - Need to further improve efficiency levels
 - Perovskite PV
 - Relatively cheap to manufacture, abundant materials
 - High efficiencies in both single and tandem junction
 - Large market potential for Glass/TCO in both single and 4T tandem junction devices if durability issues solved

Low light harvesting cell

A number of Thin Film PV opportunities arising outside of Cad Tel

Roadmap to Carbon Neutrality for 2050

Committing to achieve carbon neutrality by 2050.

Raising carbon reduction target by 2030 from 21% to 30% compared to 2018

5

PILKINGTON Decarbonisation Roadmap

Step 4: Value Chain Engagement

- Understand & reduce scope 3 emissions
- Activities include; data collection, workshops, etc.
- Benefit vs Baseline @ 15 50 % (scope 3)

Step 3: Technology Change

- Development & implementation of new technologies
- Benefit vs Baseline @ 20 70 %
- Activities include; Carbon capture,
 Low carbon fuels, electrification,
 alternative materials, etc.

Step 1: Operational Efficiency

- Effective dissemination of energy/CO₂ efficiency measures across all Group operations
- Activities include; infrastructure upgrades, waste glass (cullet) management, etc.
- Benefit vs Baseline @ 5 15 %

Step 5: Carbon Offsets

 Final step to achieve carbon neutrality

Step 2: Renewable Energy

- Procurement/generation of renewable energy
- Activities include; PPA, on site generation, heat recovery
- Benefit vs Baseline @ 5 15 %

NSG Group achieves World First Float Glass production with Hydrogen Fuel

- Aug-2021 Flame appearance with increasing hydrogen
- @7% reduction in overall CO₂ footprint of glass produced during the trial

World's first float line to use Hydrogen as a fuel

NSG Group Achieves Another World First – Float Glass production with 100% Biofuel

- 14th 17th February 2022
- Excellent fuel for glassmaking technical properties very similar to traditional fuel oil
- High level of confidence that liquid biofuel is a viable alternative to fossil fuel
- @40% reduction in overall CO₂ footprint of the glass produced
- Technical challenge overcome Commercial & Logistics challenges remain

Lowest carbon float glass ever produced in the world

Pilkington Mirai™

- Mirai, meaning 'future' in Japanese, was developed to mark the start of the next generation of low carbon glass products to help meet stricter sustainability requirements in the built environment.
- 50% less embodied carbon* compared to our standard float glass
- A low Global Warming Potential (GWP**) of less than 5.5 kg CO2 per m^{2*}
- Manufactured using a combination of alternative fuel, high recycled glass content and 100% renewable electricity
- Identical neutral aesthetics, exceptional quality and performance as our standard product, manufactured in accordance with EN 572-2

Pilkington **Mirai™** can currently be offered as a low carbon base substrate or in combination with our high performance low-e and solar control coating ranges such as Pilkington **Optitherm™**, Pilkington **Suncool™** including laminated and acoustic variants and has been designed for both commercial and residential segments.

Summary

- NSG continuing it's shift from commodity to value added glass
 - Solar sector is a key part of this strategy
 - Further expansion of our use of On-Line Coatings to supply sector announced
- NSG working in parallel on key carbon reduction activities
 - Proof of concepts successfully conducted for H₂ and Biofuels
 - Significant work now on evaluating commercial viability of these routes for all market segments

GROUP

Vitro Flat Glass, LLC Company Overview and 2023 Update Solar Program

October 2023

Company overview

- Vitro is the largest **glass manufacturing company** in North America and one of the largest in the world.
- +110 years of experience. Founded in 1909 in Mexico, the company offers quality products and reliable services to serve 3 segments: Flat Glass, Glass Containers and Chemicals.
- In 2016 and 2017, Vitro **acquired PPG & PGW** respectively, to consolidate, expand and strengthen the architectural and automotive businesses.
- Vitro's companies produce, process, distribute and market a wide range of glass products to multiple markets like architectural and automotive glass, cosmetics, fragrances, pharmaceuticals and liquors. It also supplies chemicals and raw materials, machinery and equipment for industrial use.

Architectural Glass Business

- Vitro manufactures and distributes glass for the construction, residential, industrial and automotive segments.
- We supply a wide range of value-added glass products, such as Solarban[®], Starphire[®], Intercept[®] IGU Spacer, VacuMax[®], Solarphire[®] PV, Solarphire[®] AR, SolarVolt[®]

Solar Program

New Products

 SolarVolt[®] BIPV modules for the architectural market

• Glass and fabricated backplates for CdTe modules for the utility market

Generate clean energy. Replace building envelope materials. Give glass something new to do. Produce CO_free power. Customize aesthetics and performance with any Vitro Glass product. Potentially replace typical building enclosure and exterior elements. Next-generation, energy-efficient design is inevitable with new Solarvolt[™] BIPV modules by Vitro Architectural Glass.

For more information, contact an architectural representative. Find yours at vitrosolarvolt.com

New Projects – Focus on CdTe

- Initiated development with partners to deliver technology to increase the performance of CdTe modules with potential applications to perovskite PV
- Project partners aligned to provide complementary technology strengths to target improvements in the superstrate component
 - Device and materials physics
 - Materials development
 - Component process
 - Device fabrication
- Goal is to develop technologies with path to supply commercial products to the CdTe market

NREL CRADA Project *Develop novel front contact layers for CdTe photovoltaics*

- Partnered with NREL Thin Film Material Science & Processing group Deborah Mcgott, Craig Perkins, Matt Reese
- The goal is to develop theory and processes to identify and incorporate front junction materials into CdTe based photovoltaic devices to enable higher open circuit voltage and efficiencies. This will include investigation of front junction partner band alignment, doping density, oxidation catalytic activity, and stability.
- Project framework:
 - Front junction materials selection and experiments
 - Front junction materials evaluation experiments
- Status...nine candidate materials identified, ranked and investigation underway
SETO Solar Manufacturing Incubator Funded Project High Performance Superstrate (HPS) for CdTe Modules

- Partners
 - Dr. Amit Munshi, Colorado State University
 - Dr. Cory Perkins, nexTC Corporation
 - Dr. Michael Heben, University of Toledo
- Goals
 - Increase CdTe module efficiency through multicomponent improvements to the HPS
 - Provide scholarship funds for STEM research opportunities through programs at University partners
- Project framework:
 - Budget Period 1- Identify materials and processes for each component; demonstration of existing high strain point glass composition, decision review milestones for each component
 - Budget Period 2 Integrate two or more components into the HPS with measured gains in improvement

SETO Solar Manufacturing Incubator Funded Project *High Performance Superstrate for CdTe Modules*

Status
Project logistics in place

Modeling using physics- and ML-based tools to drive design and materials development

Initial combinatorial materials research begun

Fabrication of individual components underway

- Glass substrate
- Transparent conductor
- Photon engineered layers

Thank You

Update on the Status of

Change of Management

➢Back in July 2023, the majority of TSI stakeholders decided a change in executive management was necessary to ensure the long-term success and viability of Toledo Solar

Sean Fontenot was elected as the new Chairman of the Board

Tom Pratt was installed as the interim President, Treasurer, and Secretary to guide TSI during this transition

Toledo Solar's Future

The board remains committed to Toledo Solar's mission of expanding CdTe adoption and usage worldwide, as well as strengthening US based manufacturing in general

 \succ To this end, the board is also committed to providing the resources necessary to make TSI successful

- >Interim funding secured
- >Implement new systems
- ≻Hire personnel
- Equipment/materials

➢Plans for future funding in the works

Administrative Changes

Settlement reached with First Solar in September

- >Swift resolution speaks to the new management's commitment.
- >Opens the door for a more collaborative relationship with FS moving forward

≻New management team

EHS system implementation
Ross Environmental
St. John EHS Consulting

Production/ Process Changes

- Re-commissioning of a proven VTD system
- Inline metrology
 - > XRF
 - CdCl₂ Heat Treatment Pyrometers
 - Plans to expand inline metrology further
- Centralized Database
 - SQL/JMP Based
 - Freely accessible internally
- Project Planning/Project Management Systems

Growing the Team

C-suiteInterim COO (by EOY 2023)

Remainder of C-suite (Q2 2024)

≻Operations

- Added an operator in October
- Added a laser technician in October
- Adding a controls engineer end of October/early November
- Expecting a 2nd operator added in November
- Continued review of personnel needs and hiring as needed

Moving Forward

Collaboration with University of Toledo and Colorado State University
Greater engagement in CdTe industry via CTAC and US-MAC

➢Non-Utility and rooftop Markets

Continued focus on product development, specifically semi-transparent modules

- ►BIPV
- ≻Agrivoltaics
- ≻Automotive
- ➤Other niche sectors

Looking Ahead

✓ Interim COO✓ Produce complete modules

- ✓ Meet internal targets
- ✓ DOE 9330

Q4 2023

✓ Installation of new lines
✓ Plans for new factories to further increase production capacity

2025/2026

Q2 2024

✓ C-suite

- ✓ Start of UL certification process
- ✓ Completion of DOE 9330
- Long term capital investment secured
- ✓ Planning/initial orders for new production lines

CTF Solar GmbH

7th CdTe workshop at NREL (USA)

Anna Kindvall, October 2023

• History of CTF SOLAR

- Production technology and factory projects
- Research and development

CTF Solar – CdTe Solar glass innovation with a long history, a CNMB company

- 1969 World's first working cadmium telluride (CdTe) cell by Dr. Dieter Bonnet
- 1993 Start of industrialization; predecessor ANTEC GmbH
- 2012 Take-over by CTIEC, part of CNBM group
- 2015 Dresden R&D Center established, 15,2% cell efficiency
- 2017 Start of production in first Factory Chengdu
- 2020 Upgrade of Dresden pilot line at new location, > 50 R&D staff
- 2022 Start of production in Handan factory
- 2023 Start of production in Ruichang factory

CTF Process & Equipment Technology

Production Facility

- Proprietary CdTe module technology
- 100 to 300 MWp production capacity possible
- 288 Wp modules at 15% efficiency (as a starting point)
- 1200 mm x 1600 mm x 7 mm modules
- coating technology by CTF Solar
- O 24/7 operation, 1 production line
- 65 modules per hour
- 95 % yield
- zero-emission design
- \rightarrow Cell research to development of full factories
- ightarrow CTF does not own factories
- \rightarrow Factories are offered world wide

CdTe factory, internal view of site with one production line

Proprietary CSS semiconductor deposition technology on glass

Source: M. Reese NREL

- CSS (Close Spaced Sublimation) deposition technology in <u>pure</u> vacuum compared to others
- Fully automated and reliable less than 5 hours from glass to solar glass
- 1,92 m² glass-glass module design
- > 60 joint patents CTIEC / CTF

Factories

Jiamusi -100 MW

BIPV products – glass windows

BIPV products – examples

Colorful Applications

BIPV products – examples

Transparent Solar Glass for Window-Applications and Fences

Current lab cell efficiency and CTFs R&D Pilot Line

Lab-Cell Eta-Developement:

Source: ISFH measurement report: 12520Z_05,2

- 20.1% power conversion efficiency
- based on 0,495 cm² rear metallization area
- Internal cell record 20.84% (2022/10)

Pilot Line:

- Format: 30x40 cm²
- O Dynamic CSS coating
- Similar to full size production process

CTF R&D: Analytic department PL and TRPL

By changing absorber deposition and passivation treatment configurations and conditions, a wide range of lifetimes can be attained

PicoQuant FluoTime 300

- Steady-state and timeresolved PL
- 640nm excitation source
- UV/VIS PMT
- Soon to be upgraded with additional IR PMT for longwavelength detection

• Fundamental research of new processes towards 25 % cell efficiencies

• Development of advanced characterization methods

• Aligned certified IV measurements (optimized for CdTe thin film cells)

RISE Professional offers summer research internships in Germany

Rise: Research Internships in Science and Engineering

The German Federal Foreign Office (DAAD) enables an internship in Germany to Master's and Ph.D. students from USA, Canada, Great Britain or Ireland at companies and non-university research institutions with strong relations to industry.

Procedure:

 The internship database opens between October 15th and November 30th. The students need to submit their application documents to the RISE portal.

https://www.daad.de/rise/en/rise-professional/

Thank you!

Contact:

CTF SOLAR GmbH Manfred-von-Ardenne-Ring 4 01099 Dresden, Germany

Phone: +49 351 896705 0 mailto: info@ctf-solar.com web: http://www.ctf-solar.com

Job applications to: <u>HR@ctf-solar.com</u>

Contact Information: Anna Kindvall <u>Anna.Kindvall@ctf-solar.com</u> CFV Labs Albuquerque, NM

Jim Crimmins, CEO CdTe Workshop

2023-10-23

CFV Labs

Thin Film Testing at CFV

CFV Labs

- PV Test and Research Lab in Albuquerque, NM.
- Specializes in custom performance and reliability testing.
- Largest market share of commercial thin film testing in US
- National Lab Collaborations:
 - PACT Center Perovskites Sandia/NREL/Los Alamos
 - Hail Testing Duramat James Hartley
 - CSP Mirror Reliability Sandia
 - Tracker Reliability Sensor Direct-to Cloud Sandia

CFV Labs

CFV has been testing thinfilms since 2011

Thin-film testing at CFV is happening with different technologies and at very different scales

CFV Labs

- Thin-film testing ranges from lower TRL Perovskite cell and mini-module samples to large format commercial CdTe products
- Imperative to have different equipment and techniques for different TRLs and product sizes.
- Tested technologies include CIGS, CdTe, bifacial CdTe, PSC, tandems.
- Modules are getting bigger!

Wide spectrum of possible testing scenarios depending on TRL

• Types of thin film testing done at CFV:

- Preconditioning/Stabilization
- Performance Characterization
- Outdoor Testing
- Reliability Testing
- Certification/Bankability Testing
- Subsidized testing through PACT and American Solar Prize

Small scale devices are typically being preconditioned with light soaking

Atonometrics chamber can support many smaller devices

CFV Labs

• Preconditioning – Small Scale Devices

Can be hard to find commercial electronics for smaller samples – we make our own.

CFV Labs

• Custom load boards (<10W) for preconditioning at MPPT, IV tracing indoors and outdoors.

Large scale thin film devices are typically preconditione d using elevated temperatures and current injection

CFV Labs

• Preconditioning – Large Scale Devices.

G2V LED light source set-up for small scale samples, up to 250mm x 250 mm

Temperature controlled chuck.

Custom< 10W Electronics.

CFV Labs

• Performance Characterization – Small Scale

Custom electronics and software can run various workflows including asymptotic **IV** curves

CFV Labs

Current (

5

• Performance Characterization – Small Scale

PSC Workflow - Measured at CFV Labs
halm A+/A+/A+ flasher with attached temperature chamber

Able to measure modules up to 2.5m x 1.4m

G-T matrices, tempcos

CFV Labs

• Performance Characterization – Large Scale

Moving the system outdoors

CFV Labs

16 measurement/load channels per enclosure, integrated power supply, and computer will provide a complete testing unit.

CFV Labs outdoor test rack equipped with irradiance sensors, weather station, and electronic loads specifically designed for mini-modules and cells.

Specification	Parameter 1	Parameter 2	Parameter 3	Parameter 4
I,V Ranges	150ma/250ma/ 500ma/ 1A	3V/6V/12V/24V	16-bit A/D converter	Accuracy +/2% typical
Temperature Measurement	Type K-, J-, N-, T-, S-, R-, or E- thermocouple	18-bit A/D converter	0.05 °C resolution	+/- 1 °C accuracy typical
Card Interface	16 channels	Modbus	16 registers/ch.	115.2 kbps
Operational / Data Logging Options	Campbell – simple functionality	Raspberry Pi – complex functionality	Ethernet/Wi-Fi MQTT	NV data backup Battery backup

Chambers are large and multi-purpose and can be used for DH, TC, HF, UV, etc.

Frequently this testing used in support of certification or bankability

CFV Labs

• Environmental Stresses – All Scales

Envirotronics Triple DH Chamber

SLZ UV Chamber

ESPEC Temperature and Humidity Environmental Chambers

Hail testing in high demand for certain deployment locations

CFV Labs

• Hail Testing – thin films potentially have advantage here

MLT testing an increasing concern as modules become larger – both cell cracking and total package failure can be a problem

CFV Labs

 Mechanical Load Testing – thin films potentially have advantage here

CFV is a Connector for and can accept prize vouchers for testing services

CFV Labs

• American Made Solar Prize

PACT center launched in 2021

Product mix still in flux commercially

CFV Labs

- Accelerator for commercializing Perovskite products.
- Development of technology specific preconditioning, characterization and reliability testing protocols.
- Subsidized testing for commercial participants.
- Indoor and outdoor test stands at NREL, Sandia and CFV.
- Tandem capabilities starting to be developed.
- New products being added to testing portfolio as market matures.

Contact

Jim Crimmins, CEO

Email: jim.crimmins@cfvlabs.com

CFV Labs 5600-A University Blvd. Albuquerque, NM 87106

CFV Labs

n c x · ī c

Headquartered on HP Campus in Corvallis, OR

- Spinout from OSU
- Chemical startup

2

• 5 full time employees

nex.īc. Solution

Diffusion bilayer

• Glass

Diffusion bilayer

Π Ͼ Χ · Τ Ϲ "

TCO

Bilayer

TCO

n c x · T c

Functional coatings

Improved sheet resistance Low-surface roughness Advanced materials sets

Π Ͼ Χ · Τ Ϲ ..

Since last meeting...

New: Emitter films

n c x · T c .

New: Emitter films

Π (X · T C ...

Thank you!

Cory Perkins, PhD – Founder/CEO Email: cory@nextcmaterials.com TM

Disruptive Solar Energy Innovations

Proud member of -

http<u>s://w</u>ww.u<u>sa-cdte.org/</u>

About JPHB -

 JPHB Solutions LLC/JPHB CleanTech LLC is a spin-off from CSU founded by Amit Munshi

• JPHB is aimed at investigating some of the high-risk, high payoff technology ideas; develop and license the technology to partner organizations

Update #1 – CdTe/Perovskite PV

Preliminary work in collaboration with Indian Institute of Technology at Bombay

Update #2 – High Value c-Si End-of-Life Recycling

- >90% recovery of glass intact (without crushing or breaking)
- ★ >80% recovery of c-Si solar cells
- ★ >50% recovery of high value materials viz. silicon, copper and silver

Preliminary results; Patent pending

Total process time - ~10 seconds; No corrosive chemicals used

Update #3 – Navajo Nation Off-grid Resilient PV

Test setup successfully completed, planning for installation in the reservation in progress

Update #3 – Navajo Nation Off-grid Resilient PV

Test setup successfully completed, planning for installation in the reservation in progress

Update #3 – Navajo Nation: Potential Impact

Self-Sustainable Energy

Workforce Development

Resource Accessibility

Test setup successfully completed, planning for installation in the reservation in progress

Acknowledgement -

- Anthony Nicholson, William Nichols, and JPHB team
- JPHB advisors Douglas Schatz, Jay Munshi, Walajabad Sampath
- Radiation Detection Technologies Inc.
- First Solar Inc.
- Colorado State University
- Victron Energy
- National Science Foundation
- Indian Institute of Technology at Bombay
- Clean Energy Group
- Wallis Energy Corporation
- GRID Alternatives and TSAF
- And many many others...

Motivation – To make solar energy an obvious choice for all domestic and commercial applications

Product Update

Greg Horner, Kyle Lu, Leonid Vasilyev, Ethan Ignatovich, Phillip Miller, Tom Dirriwachter

Tau Science © 2023

- New features for released products
- New machines for 2023
- Plans for 2024

Released Products

PixEL™

•Cell & module EL/PL imaging for R&D, Inline process control :

○Customized for Silicon, CdTe, III-V's, PSC's○External processing runs customer code

•World's fastest EQE/IQE system measures full spectrum in seconds: full cell or small spot scanner ⊙Silicon, thin-film and bifacial configurations

IRIS™

Chucks

•Time-resolved hotspot detection 0100-300 ms / cell

Cooled & uncooled, conventional and ibc

Thin Film QE Scanner

- XY Stage
- N cells/coupon
- MUX
- ~5 sec / cell

Origin:

- David Young, NREL patent
- DOE SBIR program

New: I-V Sweep Integrated into QE

Screen for shunted cells

- Dark or Illuminated I-V
- Bias w/ discrete LED λ 's
- Diode parameter fit
- Future?: AMx.x lightsource

PL/EL Imaging: Back Contact Cell Example

Bias Strategy can highlight defects

Looking for shortcuts to speed detection

1-sun Illumination + hold cell @+0.2V

→high optical injection, and most carriers are extracted, but regions w/ 'incomplete extraction' are bright.

1-sun Illumination + hold cell @0.0V

Same sample → high injection, but hold it at short circuit so the only remaining minority carriers are stranded in the bulk ('diffusion limited')

Because they're deep bulk, we start to see ingot features. In this case, oxygen precipitate rings are visible.

Ne

New for 2023: SSMC

Steady State Microwave Photoconductivity (SSMC) Bryon Larson, Obadiah Reid (NREL), Kyle Lu (Tau) NREL Patent, SBIR Phase 2 DE-SC0020718

New for 2023: TRPL Mapper

- XY scanner
- Auto spotsize
- 500ps or 2ns response time
- Si avalanche detector

DOE SBIR DE-SC0020718

Kyle Lu, Tyler Brau, Abasi Abudulimu, Jared Friedl, Mike Heben, Randy Ellingson, Adam Phillips, Greg Horner

Typical dwell time, CdTe: ~5s/site

2024: Linescan non-contact EL, SETO DE-EE0009635

11

- ERE and PLE imaging with Holman Group, ASU
- More contactors and chucks!
- N-channel I-V sweeper
- Indoor & Outdoor WiFi versions
 - Wireless: self powered
 - Hold at MPP
 - Periodic IV sweep
 - WiFi datalogger to central database

Comments, Questions, Collaborations are welcome!

Greg Horner Ghorner@tauscience.com

Company Activities and Capabilities

Kurt L. Barth Ph.D.

President kbarth@direct-solar.com

<u>Contributors (Past and present):</u> Direct Solar: Larry Maple, Sam Ellis CSU: Tushar Shimpi, Sampath, Ryan Ruhle, and Davis Hemenway Arizona State Univ.: Ashwini Pavgi, Mani Govindasamy NREL: Mike Kempe, A. Watts

Direct-solar.com

Direct Solar LLC

Experience

- Research and commercialization
- Members have multiple equity financing rounds, government R&D funding over \$28M
- Extensive partnerships and industry contacts extend capabilities

Competencies

- Technology due diligence
- IP legal support
- Manufacturing techno-economic assessment
- New module designs / reliability

Technology Due Diligence

Confidential, independent consultation and analysis

o Commercial and technical

Target areas

- o IP evaluation
- o Techno-economic / costing
- o Reliability / testing

Recent engagements / clients

- Capital providers / VCs: Pre-investment analysis
- Third party review of federal agency reports: costing analysis
- o O&M, and asset deployment: Market analysis (early stage)

IP Legal Support

Patent, IP and expert witness services

Target areas

- o c-Si thin film module construction
- Thin film processing and hardware

Past engagements include

- Patent landscape / freedom operate analysis
- Multiple engagements for PV expert witness (including for CdTe)
- Negotiated the acquisition of a multi-patent IP package for a large university

IP Legal Support: Patent Lawsuit Expertise

Expert Witness: Direct Solar retained 2021-present by an international law firm

Litigants: "Well known" international PV manufacturers

Area: Silicon solar module design

Direct Solar activities

- Patent prior art review
- Deconstructed competitor modules
- Drafted technical report used for IPR hearing at US Patent Trial and Appeal Board (PTAB)

Outcome: PTAB cancelled all the challenged claims based Direct Solar analysis

Manufacturing Techno-Economic Analysis

Business plan development (early stage)

- Developed initial business plan for equity funding
- Multiple rounds eventually totaled to \$300M

GMS Power, Thailand

Hydro, gas and solar generating assets

Retained Direct Solar

- Investigated research, design and manufacturing requirements for CdTe product introduction
- o Direct Solar recommendations adopted

1. BACKGROUND

2. BUSINESS OPPORTUNITY ANALYSIS 7 2.1 Business Model Development 2.2 Module Manufacturing Analysis 11 2.3 Analysis of "Ground Up" Manufacturing Business Development 18 2.4 Analysis of Manufacturing Business by 22 Acquiring (redacted) and performing R&D 2.5 Comparison of Options 24 2.6 Recommendations 25 2.7 Acquisition Candidates and Potential Partners 26

3. DEVICE STRUCTURE, MODULE STRUCTURE AND FABRICATION PROCESSES 29

3.1 Device Structure	30
3.2 Device Stability (Resistance to Performance Degradation)	32
3.3 Device Structure for Higher Efficiencies	33
3.4 IP Considerations, Freedom to Operate	36

4. PRODUCTION PROCESSES AND EQUIPMENT	37
4.1 Process Flow	38
4.2 Process Flow Schematics	45
4.3 Module Architecture, Product Development and Independent Certification	47

5. REFERENCES	49

6 APPENDIX

New Module Designs / Reliability

Members of Direct Solar developed a new module architecture to improve reliability and reduce manufacturing costs

Development

- 3 DOE projects (Barth PI)
- Proto hardware installed at CSU

Processing

- o No lamination or batching required
- Recycling: Able to separate glass sheets intact
- < 150C processing temp

Designs for CdTe, Perovskite and c-Si

Barth, K. et al. 2014 PVSC, Barth, K. et. al. 2018 WCPEC, Barth, K. et. al. 2019 PVSC.

New Module Designs / Reliability

Aggressive testing

- $\circ~$ Furnace creep testing: 105 C for 200 hrs.
- \circ Humidity Freeze 40 cycles
- Sequential stress (Thresher style)

- 4x Smaller factory footprint
- Ultra low moisture capability (perovskites)
- ~ 20x reduction in cycle time
- Better than 50% reduction in Cap-Ex

DIRECT SOLAR

Flexible and thin-film CdTe solar cells

Yong-Hang Zhang

(Team members: J. Ding, C.-Y. Tsai, C. M. Campbell, Z. Ju, X. Qi, S. Schaefer, T. McCarthy)

Arizona State University Tempe, Arizona 85287

Email: yhzhang@asu.edu

Motivations for the study of Ultra-thin CdTe solar cells

MBE Optoelectronics Group

Optical analysis

MBE Optoelectronics Group

D. Ding, S. R. Johnson, and Y.-H. Zhang, *Proceedings of 35th IEEE Photovoltaic Specialist Conference*, p. 2908, 2010.

D. Ding, S. R. Johnson, S.-Q. Yu, S.-N. Wu, and Y.-H. Zhang, A Semi-Analytical Model for Semiconductor Solar Cells, J. Appl. Phys. 110, 123104 (2011).

Theoretically achievable efficiency of GaAs cells

Expected achievable efficiency 31.25%.

S. Liu, D. Ding, S. R. Johnson, Y.-H. Zhang, Optimal optical designs for GaAs single-junction solar cells, SPIE Photonics West, Jan. 21-26, 2012.

Optimal thickness of GaAs SJ Solar Cells

- There is an optimal thickness for SJ cell using non-ideal material.
- The higher the non-radiative recombination rate, the thinner the optimal thickness.

How to achieve optimal efficiency using material with average quality?

Use scattering to trap the light and thin layer to reduce the non-radiative recombination

D. Ding, S. R. Johnson, and Y.-H. Zhang, Proc. of 35th IEEE PVSC, p. 2908, 2010

D. Ding, S. R. Johnson, S.-Q. Yu, S.-N. Wu, and Y.-H. Zhang, JAP. 110, 123104 (2011).

Device Structure

Two types of device structures: 300 nm/1000 nm absorber

As-Grown Textures of AllnP Layer

High-density cone textures were formed intentionally during MOCVD growth.

MBE Optoelectronics Group

Process Flow

MBE Optoelectronics Group

Performance of Fabricated Cells

GaAs thickness	V _{oc}	J _{sc}	FF	η	Top grid coverage	Anticipated η with 2% top grid
300 nm	1.00 V	24.5 mA/cm ²	77.8%	19.1%	9.7%	20.7%
1000 nm	1.00 V	26.1 mA/cm ²	78.8%	20.6%	10.7%	22.6%

W. Yang, J. Becker, S. Liu, Y.-S. Kuo, J.-J. Li, B. Landini, K. Campman, Y.-H. Zhang, Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer, JAP 115, 203105 (2014). MBE Optoelectronics Group

External Quantum Efficiency

At short λ : Higher extraction efficiency of carriers in the 300 nm cells

At long λ : More light absorption in the 1000 nm cells

W. Yang, J. Becker, S. Liu, Y.-S. Kuo, J.-J. Li, B. Landini, K. Campman, Y.-H. Zhang, Ultra-thin GaAs single-

junction solar cells integrated with a reflective back scattering layer, JAP 115, 203105 (2014).

ELO Using MgTe Sacrificial Layer

ELO process of CdTe DH thin films / Devices

• Monocrystalline CdTe thin-film solar cells

C. M. Campbell, C.-Y. Tsai, J. Ding, and Y.-H. Zhang, *Epitaxial Lift Off of II-VI Thin Films Using Water-Soluble MgTe*, JPV **9**, 1834-1838 (2019)

Thin Film Characterizations

- Smooth and intact lift-off surface revealed by AFM image. ٠
- CdTe/MgCdTe DH survives the ELO. •
- Highly selective etching of MgTe vs. CdTe using DI water. •

C. M. Campbell, C.-Y. Tsai, J. Ding, and Y.-H. Zhang, Epitaxial Lift Off of II-VI Thin Films Using Water-Soluble MaTe, JPV 9, 1834-1838 (2019)

J. Ding, C.-Y. Tsai, Z. Ju, and Y.-H. Zhang, Epitaxial lift-off CdTe/MqCdTe double heterostructures for thin-film and flexible solar cells applications, APL 118, 181101 (2021). (Featured article, Editor's pick as Scilight)

Photoluminescence Before/After ELO

Conventional CdTe DH

J. Ding, C.-Y. Tsai, Z. Ju, and Y.-H. Zhang, *Epitaxial lift-off CdTe/MgCdTe double heterostructures for thin-film and flexible solar cells applications*, APL **118**, 181101 (2021). (Featured article, Editor's pick as Scilight)

MBE Optoelectronics Group

Preliminary result of CdTe thin-film devices

Voltage (V)

Summary

- Using nearly-lattice-matched, water-soluble MgTe as a sacrificial layer. Highquality CdTe DH can be grown on MgTe layer by using MBE.
- Smooth and intact lift-off surface, and enhanced optical performance of the lift-off thin films.
- CdTe lift-off thin films

 $\circ iV_{OC} = 1.152 \text{ V}$

 \circ J_{sc} = 24.7 mA/cm² based on simulation

• Flexible CdTe thin-film solar cells

• Efficiency = 9.8%, V_{OC} = 0.79 V

21.4% efficient CdSeTe/CdTe solar cells using highly resistive intrinsic ZnO buffer layers

L. Kujovic, X. Liu, M. Togay, A. M. Law, A. Abbas, L. O. Jones, K. Curson, L. C. Infante-Ortega, K. L. Barth, J. W. Bowers and J. M. Walls Loughborough University, Loughborough, UK

> **O. Oklobia, D. A. Lamb and S. J. C. Irvine** Swansea University, Swansea, UK

W. Zhang, C. Lee, T. Nagle, D. Lu and G. Xiong First Solar Inc, Santa Clara, CA, USA

j.m.walls@lboro.ac.uk

CdTe Workshop, 25th-27th October 2023

Introduction

- Intrinsic ZnO and SnO₂ buffer layers deposited on NSG TEC[™] glass using RF sputtering
- The buffer layers fabricated into As-doped CdSeTe/CdTe devices at First Solar Inc

ZnO Thickness vs. Efficiency and V_{oc}

Initially, the optimal ZnO thickness was 50 nm

ZnO Thickness vs. FF and J_{sc}

J-V

- An efficiency of 21.44% was achieved by incorporating an intrinsic ZnO buffer layer
- Pre-deposited Multilayer AR coating
- The ZnO buffer layer is 50 nm thick
- Deposited at room temperature

- Continuous ZnO layer, with no apparent Zn diffusion occurring during the high temperature CdSeTe/CdTe deposition or CdCl₂ treatment
- No CdSeTe diffusion into the ZnO is observed, showing the durability/stability of the buffer layer
- The unusual omission of CI at the junction suggests that the microstructure of the ZnO/CdSeTe interface is of high quality

High-Resolution TEM

- High-quality interfaces between FTO/ZnO and ZnO/CdSeTe
- Confirms the nanocrystalline structure of the ZnO layer (ZnO deposition at room temp.)
STEM-EDX: SnO2 50nm buffer layer

Conclusions

The optimal ZnO and SnO₂ thicknesses are 65 nm and 70 nm, respectively.

ZnO devices have a higher efficiency, Voc and FF than SnO₂ devices.
 However, SnO₂ devices have a higher Jsc.

The interface quality between ZnO and CdSeTe is exceptionally good.
 Chlorine is not observed in EDX.

 The carrier concentrations in the two buffer types differ by at least 6 orders of magnitude

Discussions with Eric Colegrove, Matt Reese and Craig Perkins (NREL) gratefully acknowledged.

Engineering and Physical Sciences Research Council

#InspiringWinners since 1909

Progress and Future Directions of CdTe Devices

Dingyuan Lu, Rouin Farshchi, Chungho Lee, Xiaoping Li, Rajni Mallick, Gang Xiong

First Solar October 26th, 2023

New CdTe Record Efficiency 22.4%

2023 Copyright First Solar, Inc

◎ 2

Outlook for CdSeTe:As Performance

		2023	Near-term	Mid-term
\checkmark	Voc	900	917	1000*
\checkmark	FF	79.3	81	82.5 ↑
\checkmark	Jsc	31.4	31.7	31.7
	Cell Eff.	22.4%	23.5%	>26.2%

- 23.5% from Voc and FF measured from independent cells
- 1000 mV is estimated based on 0.5%ERE

Future Directions for CdSeTe

Potential fluctuation improvement?

- How to validate? How to improve?
- Interface that is less sensitive to non-uniform absorber?
- As activation ratio: why is 3-6% and how to improve?

Back contact passivation and carrier selectivity

• For Voc, thinner absorber, and bifaciality.

High ERE (iVoc) to high Voc?

• Interpretation of contact selectivity of the material space?

Alternative dopant – phosphorus?

- Reduced sub-band defects for efficiency entitlement?
- Better activation?

Novel device structure, e.g. n-i-p?

LEADING THE WORLD'S SUSTAINABLE ENERGY FUTURE

Antimony-doping Approaches for Vapor Transport CdSeTe Bill Shafarman

Institute of Energy Conversion, University of Delaware

Bin Du, Daniel Obikoya, Ujjwal Das, Kevin Dobson, Shannon Fields, Anderson Janotti, Intuon Chatratin, Igor Evangelista *Consultant:* Brian McCandless

Jason Baxter, Gregory Manoukian, Alex Ashley

Aaron Arehart, Aayush Nahar

Award # DE-EE0009344

7TH CdTe Workshop, Oct. 25-27, 2023

Group V doping of CdTe

□ Temperature-dependent Hall data on doped single crystals ⇒ P, As, Sb are all shallow acceptors with ionization energies ~ 100 meV.

A. Nagaoka et al., Appl. Phys. Lett. 116, 132102 (2020)

Group V doping of CdTe

□ First-principles DFT calculations for P_{Te}, As_{Te}, and Sb_{Te}

Chatratin, et al., J. Phys. Chem. Lett. (2023).

- Use large supercell sizes and add effects of spin-orbit coupling
- Calculate ionization energies:
 93 meV for P
 99 meV for As
 116 meV for Sb
- Differs from earlier calculations

Group V doping efficiency

- Doping efficiency (activation): hole concentration / atomic concentration
 - Doped single crystals: doping efficiency < 50% (Nagaoka)
 - compensating defects
 - □ Thin films: typically have p/[As] ≈ 1% for films grown by various methods (VTD, evaporation, MOCVD, …)
 - Potential explanations of low doping efficiency:
 - dopant clusters or inclusions
 - accumulation along grain boundaries
 - formation of compensating defect, e.g. AX centers, increased bandtails

Antimony doping of CdTe

Choice of Sb for group V dopant:

- □ Atomic radius: compare
 - $R_{Te} = 136 \text{ pm}$ $R_{Sb} = 140 \text{ pm}$ $R_{As} = 120 \text{ pm}$ $R_{P} = 106 \text{ pm}$
- □ VTD with in-situ Sb, As, or P ⇒ highest doping efficiency with Sb McCandless, et. al., *Sci. Rpts.* 8, 14519 (2018)

Time decay of hole concentration for 2 years: "<u>Sb-doping is more stable</u> than As and P doping which may come from slow diffusion" (Nagaoka)

NIVERSITY OF DELAWARD

Doping considerations

Processing issues:

- In-situ vs. ex-situ doping diffusion characteristics (Colgrove, J. Phys. D 51 075102 (2018))
- Defect formation vs. Cd overpressure during deposition and cooling rate
- Cluster formation in vapor phase processing: propose pyrolysis enhanced vapor
- □ Non-equilibrium growth due to doping, Se grading

Device and electronic issues:

- □ Higher doping \Rightarrow shallow depletion width \approx 0.3 µm
 - > SRH recombination near surface, Se grading
 - Increased interface recombination (Metzger, Nat Energy 4, 837 (2019))
- □ Impact of excess dopant on recombination, lifetime

Approach: overlapping CdTe + Sb vapors

Two-stage Sb + Cd VT source with pyrolysis stage to crack Sb vapor

Sb-doped CdTe process and device fab

VTD

CdTe:Sb

 $T_{P}, T_{D}, ...$

- Evaporated CdSeTe/CdTe layer + HTA to eliminate WZ phase
- □ VT CdTe:Sb with different deposition conditions
 - dopant temperature T_D, pyrolyzer temperature T_P, Cd excess
 - > thickness \approx 4 µm, translation speed = 0.5 or 1.5 in/ min
 - ► $T_{SS} \approx 470 \text{ C}$

NIVERSITY OF DELAWARE

NERGY CONVERSION

NSTITUTE OF

- Device process / back contact
 - CuCl₂ dip anneal / graphite paste

CdSeTe/CdTe

• HTA at 575C

Front layer

Substrate

•Tec-12D

Sb flux, pyrolysis \Rightarrow doping efficiency

_						I	
	Sbs	source	Pyro	olyzer		Doping	
	T _D (°C)	Sb flux* (mole/s)	T _P (°C)	Monotonic Sb*	[Sb] ^{SIMS} (cm⁻³)	$p = [N_A - N_D]$ (cm ⁻³)	Doping efficiency
	430	0.2 x 10 ⁻⁹	1100	100%	1 x 10 ¹⁷	1 x 10 ¹⁵	1 ± 0.2%
	510	1 x 10⁻ ⁹	1100	100%	1 x 10 ¹⁷	4×10^{15}	4 ± 0.6%
	600	5x10 ⁻⁹	1100	100%	1 x 10 ¹⁷	2 x 10 ¹⁶	20 ± 3%

Translation = 0.5 in/min, effective growth rate = $2 \mu m/min$

Sb flux increase by 25X with no change in film concentration

- Imitation of doping source
- Increased carrier concentration
 - > doping efficiency $\leq 20\%$ with $p = [N_A - N_D] = 2 \times 10^{16} \text{ cm}^{-3}$
 - uncontrolled change in Cd flux
 - > also affects V_{OC} in devices

NSTITUTE OF

ENERGY CONVERSION

Sb flux, pyrolysis ⇒ doping efficiency

_				,		I	
	Sb s	source	Pyro	olyzer		Doping	
	T _D (°C)	Sb flux* (mole/s)	T _P (°C)	Monotonic Sb*	[Sb] ^{SIMS} (cm⁻³)	$p = [N_A - N_D]$ (cm ⁻³)	Doping efficiency
	510	1 x 10 ⁻⁹	805	10%	2x10 ¹⁶	4×10^{14}	2 ± 1%
	510	1 x 10⁻ ⁹	1100	100%	2×10^{16}	$1.5 \mathrm{x} 10^{15}$	9 ± 4%
_	610	6x10 ⁻⁹	1100	100%	2 x 10 ¹⁶	3.3 x 10 ¹⁵	20 ± 9%

Translation = 1.5 in/min, effective growth rate = $6 \mu m/min$

- Sb flux increase by 6X with no change in film concentration
- Increased carrier concentration by 4X with pyrolysis of Sb flux
 - > doping efficiency $\leq 20\%$
- Diffusion of Sb into evaporated graded CdSeTe front stack

Doping source upgrade

Gen.1 source

- Condensation at elbow limits Sb flux
- Cd and Sb sources at same temperature

Gen.2 source

- 2-zone heater for independent control of Sb and Cd fluxes
- Extended heater to eliminate condensation at cold zones

Carrier Dynamics

- Lifetime determined by global fitting of TRTS and TRPL with transport equations Manoukian et al.
- CdTe:Sb and CdSeTe:Sb deposited on Al₂O₃ passivation layer
- Lifetime > 10 ns for CdTe:Sb > 30 ns for CdSeTe:Sb
- □ Sb has minimal impact on lifetime: $p \le 5x10^{15}$ cm⁻³

Device Results

- □ Baseline process \Rightarrow V_{OC} = 830-850 mV W_{OC} = 600 mV
 - but aggressive CdCl₂ treatment lowers carrier concentration to mid-10¹⁴ cm⁻³
 - ➢ efficiency limited by non-optimized back contact ⇒ low FF

Temperature-dependent PL of CdSeTe:Sb

- Bandgap emission dominates PL with relatively small sub-bandgap emission
- Blue-shift with decreasing temperature
- Differs from sub-bandgap dominated PL with red-shift reported for CdSeTe:As Kuciauskus et al. Adv. Energy. Mat. 13, 2301784, 2023

Conclusions

- Vapor transport CdTe with in-situ Sb-doping
 - > 20% doping efficiency in CdSeTe:Sb sample at $p = [N_A N_D] > 10^{16} \text{ cm}^{-3}$
 - Sb -pyrolysis enhanced doping efficiency by 4X
 - > Identified need to control Cd-overpressure and Sb flux \Rightarrow Gen.2 doping source
- □ CdSeTe:Sb device with $V_{OC} = 850 \text{ mV}$
- □ Lifetime > 30 ns for CdSeTe:Sb,
- □ Low-T PL dominated by blue-shifted bandgap emission
 - potential for reduced loss from bandtails, fluctuations
- □ <u>More details on CdSeTe:Sb at 7th CdTE Workshop:</u>
 - Greg Manoukian: Quantifying carrier dynamics and PL characterization of antimony-doped CdTe and CdSeTe
 - Bin Du: Pyrolyzer assisted Sb-doped CdTe deposition
 - Aaron Arehart: Defects and Doping in Sb-doped CdTe
 - Anderson Janotti: Theory of Formability and Diffusivity of Point Defects and Impurities in Cd(Se,Te)

Detailed physical modeling for prompt actionable feedback to process development

Dmitry Krasikov

lgor Sankin Kevin McReynolds

To diagnose physical reasons behind small performance changes

Compare signals with reference device

- Analyze losses
- Find out what actually changed in the device

Provide intel for process improvement

Physical modeling of CdSeTe PV device

- Mature technology, complex device structure
 - Small process/design changes small Eff improvements
 - Multi-layer thin-film heterojunction diode with graded absorber
 - Downstream changes impact "upstream" layers and vise versa
- Purpose of device modeling
 - Diagnose physics behind small changes in performance
 - Analyze losses and suggest improvement pathways

• Challenges

- Comprehensive model (tens of params) to capture small changes
- Most of parameters cannot be measured directly must be fitted
- Fast feedback required to guide process development

Components of solution

- Robust and efficient technique to enable accurate and unique parametrization – key challenge. Welcome any help from community!
- Details and current status in the following slides

Detailed physical description

Comprehensive description required to capture/quantify small performance changes caused by small process changes

- 65+ parameters total
- ~20 measurable parameters
- ~25 parameter values from 1st principle studies or assumed based on previous modeling
- > 20+ key params must be fitted

Efficient and robust numerical solver

- Fast: ≥40 times faster than SCAPS (parallel simulation on workstation)
- Robust: compensated doping, charge trapping, IF barriers, high IF defect density, low temperatures
- Flexible: any number of layers and defects, grading functions, stoichiometry-dependent properties
- Can do: Sunny- and film-side light/dark IV(T), QE(T), ERE

Example: challenging IV(T) set simulated in less than 1sec on single core

Choice of experimental constraints

To fit model parameters, we need experimental signals that are:

- 1. Easy to interpret
- 2. Fast to measure
- 3. Fast to simulate
- 4. Provide sufficient constraints to ensure model uniqueness
- Light/Dark IV(T) is the first choice

Model parametrization

Parallel fitting starting from hundreds of initial guesses to:

- ✓ Find global minimum in multidimensional parameter space
- ✓ Analyze model non-uniqueness

Current status: non-unique fit with 4-pack

Model #1: Front IF recomb = 0.1% CBO=-0.50 eV, less IF defects

Model #2: Front IF recomb = 43% CBO=-0.37eV, more IF defects

Current status: adding additional constraints (5-pack)

- \succ More difficult to fit with G_{sc}
- More unique model

Some low-level model parameters

CdSeTe: $\tau_p >> \tau_n$

CdSeTe: recomb. on main acceptor $(\sigma_n >> \sigma_p)$

CBO = -0.4eV

Breakdown of recombination			
I	osses		
	Recombin, %		

al calan un affura a a na la in a tia n

	Recombin, %		
Region	At MPP	At OC	
Front contact	9.7	19	
Absorber	90	80	
Back contact	0.3	1	

Quality(eff entitlement) of absorber and contacts

Entitlement of	Eff, %
Front contact	23.3%
Absorber	22.1%
Back contact	27.5%

- Simplistic model cannot capture/quantify small performance changes and ensure correct conclusions comprehensive description is required
- "Advanced" characterization is not practical for rapid device diagnostics based on physical device model; IV(T) is enough to constrain model
- Efficient parametrization in multi-D space remains key challenge Math and data science support are welcome!

LEADING THE WORLD'S SUSTAINABLE ENERGY FUTURE

Voc Loss Analysis: Combining Simulation with Characterization

Marco Nardone, Sakshi Gupta, Eva Mulloy

Bowling Green State University Dept. of Physics and Astronomy

> CdTe PV Workshop NREL, Golden, Colorado Oct. 26, 2023

Outline

- Quantify Voc losses front interface, back interface, bulk.
- Integrate Data and Modeling:
 - JVTi, QE, TRPL, PL analysis and simulations for comparison to data.
- JVTi simulations over a broad parameter space:
 - front interface conduction band offset, ΔE_{c} or CBO
 - front interface recombination velocity, S_f
 - bulk non-radiative lifetime, τ
 - temperature and light intensity, T and I
 - back interface recombination velocity set to $S_b = 10^5$ cm/s, consider impact after other parameters

NREL Device V617:

- TEC12D/CdSe0.3Te0.7(500nm)/CdTe(250nm)/CdTe:As(~2.5um)
- Post-VTD densification anneal 575C-10m
- CdCl2 = 450C-60m
- Doping from CV: $N_A \simeq 2 \times 10^{16} \text{ cm}^{-3}$
- Data available: JVTi, QE, TRPL, absolute PL

	V617
V _{oc}	0.742
J_{sc}	29.4
FF	72.9
η	15.9
JVTi Data

Voc vs T at various light intensities

JVTi Study

Modeling indicates that measured E_a ~ 1.23 eV requires CBO ~ -0.2 eV (cliff) over a wide range of S_f and τ.

- Comparing data to simulated V_{oc} vs. *T* suggests $S_f \approx 1000$ cm/s, but wide range for τ .
- QE and TRPL suggest $\tau \sim 1-5$ ns.

Comparison of Recombination Current Densities

• Bulk also contributes at V_{oc} and dominates at $V < V_{oc}$.

All recombination contributions for:

Rec Current (mA/cm^2)

• Decreasing CBO (increasing cliff) increases front interface recombination exponentially for fixed S_f.

PL for Band Tail Analysis

- PL fitting parameters [1]: $E_{g,abs} = 1.415 \text{ eV}$, T = 310 K, $\Delta \mu = 0.684 \text{ eV}$, $\gamma = 0.023 \text{ eV}$, $\theta = 1$
- PLQY within 2% for model and data.
- Extracted absorption coefficient, α , and band bap shift, ΔE_g , used in device models [2].

[1] J. K. Katahara and H. W. Hillhouse, "Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence," *Journal of Applied Physics*, vol. 116, no. 17, p. 173504, 2014.
 [2] J. Wong, S. T. Omelchenko, and H. A. Atwater, "Impact of Semiconductor Band Tails and Band Filling on Photovoltaic Efficiency Limits," *ACS Energy Lett.*, vol. 6, no. 1, pp. 52–57, Jan. 2021, doi: 10.1021/acsenergylett.0c02362.

Band Tail Effects

- QE at long wavelengths fits with band tails included.
- Bulk lifetime can be increased to 5 ns with tails.

- 40 mV loss due to band tails.
- JV compared to data still requires back barrier and series resistance, but reasonably good fit.

Summary

- Integrated data and modeling: parameters shown in black below.
- In this case: front interface CBO cliff dominates voltage loss.
- $V_{oc} > 900 \text{ mV}$ can be achieved if bulk lifetime is also improved (red below).
- For $V_{oc} \sim 0.9 1$ V, radiative and back interface losses are important ($S_b = 10^5$ cm/s here).

DOE-SETO/NREL: "Development and Application of Voltage Loss Analysis for Advanced Thin-Film PV"

PI: Darius Kuciauskas.

DOE-SETO/NREL: "CdTe Core Group" PI: Matthew Reese.

Students: Sakshi Gupta, Eva Mulloy, Andrew Prostor

Voc Loss Analysis: Combining Simulation with Characterization

Marco Nardone, Sakshi Gupta, Eva Mulloy

Bowling Green State University Dept. of Physics and Astronomy

> CdTe PV Workshop NREL, Golden, Colorado Oct. 26, 2023

Extra Slides

Marco Nardone, Sakshi Gupta, Eva Mulloy

Bowling Green State University Dept. of Physics and Astronomy

> CdTe PV Workshop NREL, Golden, Colorado Oct. 26, 2023

QE Study

- QE suggests that τ is low, possibly around 1 ns.
- Inflection point of QE gives $E_{g,abs} = 1.415 \text{ eV}$.

- Corroborates S_f ~ 1000 cm/s.
- QE does not include band tails yet see IR region.

BGSU,

TRPL Study

- TRPL simulation and data support ~ 1 ns lifetime.
- Data and simulation have similar wavelength dependence if first 0.3 ns is neglected.
- Wavelength dependence may suggest low bulk lifetime.
- Uncertainties sample pre-conditioning, differences in intensity with wavelength, *E*_a injection dependence...

V_{oc} Loss Analysis at 1-sun Light Intensity

- Compare 8 scenarios (4 with tails, 4 without) Table.
- Front interface is most significant CBO.
- $V_{oc} = 0.84$ V if front is mitigated with tails, 0.88 V if no tails with the same bulk lifetime of 5 ns.
- Max $V_{oc} \sim 1 V$, then radiative and back losses are important ($S_b = 10^5 \text{ cm/s}$ here).

Voltage (V)

Effects of Light Intensity on Activation Energy

- Theories such as photoactive interface defects/dipole layers can be considered.
- The models without any such mechanism show a region with a similar trend as the data:
 - E_{a} has light dependence when S_{f} and τ are both low transition from interface to bulk recombination as intensity decreases.

1-sun E_a (eV)

- 1.4

- 1.3

- 1.2

- 1.1

1.0

Increasing light intensity 0.01-sun E_{a} (eV) 0.1-sun $E_{\rm a}~({\rm eV})$ $\Delta E_c = 0.2 \text{-eV}$ $\Delta E_c = 0.2 \text{ eV}$ - 1.5 $\Delta E_c = 0.2 \, \mathrm{eV}_{ m c}$ - 1.5 1.57 1.5 - 1.4 - 1.4 1.4 -1.3 -1.2 -1.2 -1.1 -1.4 -1.4 -1.3 -1.2 -1.1 -1. 1.4 Acvtivation Energy (eV) $\Delta E_c = 0 \; \mathrm{eV}$ $\Delta E_c = 0 \ { m eV}$ $\Delta E_c = 0 \; \mathrm{eV}$ - 1.3 - 1.3 - 1.2 - 1.2 $\Delta E_c = -0.2 \ { m eV}$ - 1.1 $\Delta E_c = -0.2 \ { m eV}$ - 1.1 $\Delta E_c = -0.2~{ m eV}$ - 1.0 - 1.0 4.0 20 51 CTTES 22 40 ~3 $\Delta E_c = -0.4 \text{ eV}$ ð $\Delta E_c = -0.4 \text{ eV}$ $\Delta E_c = -0.4 \ { m eV}$ 3 â. ., â

1.5 -

16

ô

Baseline Device Model – Bulk Properties

Bulk Parameter	Symbol	Unit	SnO ₂ :F	SnO ₂	MgZnO	Cd(Se,Te)	CdTe	Contact Parameter	Symbol	Unit	SnO ₂ /f.c.	b.c/CdTe
								Metal work function	ወ	۵۷	4.5	5 8
Thickness	d	μm	0.4	0.1	0.06	0.5	3.0	Recombination	Ψ_m	ev	4.5	5.0
Band Gap	E_{a}	eV	3.6	3.6	varied	Graded	1.5	velocity, electrons	S _n	cm/s	var.	10 ⁵
Electron Affinity	X	eV	4.5	4.5	Varied w bandgap	Graded	4.5	Recombination velocity, holes	Sp	cm/s	var	10 ⁵
Relative permittivity (Dielectric)	E _s		9	9	9	9.4	9.4	Interface		Unit	CdSeTe/MZO	
Effective DOS, conduction band	N _c	cm⁻³	2.2x10 ¹⁸	2.2x10 ¹⁸	2.2x10 ¹⁸	8.0x10 ¹⁷	8.0x10 ¹⁷	Charge Type			Neutral	
Effective DOS, valence band	N _v	cm ⁻³	1.8x10 ¹⁹	Concentration		cm-3	varied					
Electron & Hole Thermal velocity		cm s ⁻¹	1.0x10 ⁰⁷	Energy above VBM		eV	6.0x10 ⁻¹					
Mobility, electron	μ_n	cm ² V ⁻¹ s ⁻¹	100	100	100	40	320	Capture Cross Section		cm ²	10	-12
Mobility, hole	μ_p	cm ² V ⁻¹ s ⁻¹	25	25	25	5	40					_
Shallow Acceptor Density(Paper)		cm⁻³				2.0x10 ¹⁶	2.0x10 ¹⁶	Simple optical model to follow band gap grading:				
Shallow Donor density (Paper)		cm ⁻³	1.0x10 ²⁰	1.0x10 ¹⁸	1.0x10 ¹⁴			$\alpha = A \sqrt{h\nu - E_g}, \ A \approx 10^3 \text{ eV}^{-1/2} \text{ cm}^{-1}$				
Neutral mid-gap state density						1.0x10 ¹²	1.0x10 ¹³					

Mid-gap Defect Parameter	Symbol	Unit	SnO ₂ :F	n-SnO ₂	MgZnO	Cd(Se,Te)	CdTe
Defect concentration	N _t	cm⁻³		10 ¹⁵	9x10 ¹⁴	5.0x10 ¹²	5.0x10 ¹³
Defect energy level	E_t	eV		0	0	0	0
Defect charge type				(+/0)	(-/0)	(+/0)	(+/0)
Capture cross-section, electron	σ_n	cm ²		10 ⁻¹²	10-12	10-12	10-12
Capture cross-section, hole	σ_p	cm ²		10 ⁻¹⁵	10-12	10-12	10-12
Lifetime, electron average	$ au_n$	ns		0.1	0.1 ^[2]	20 ^[2]	2 ^[2]
Lifetime, hole average	$ au_p$	ns		100	0.1 ^[2]	20 ^[2]	2 ^[2]

Notes:

References:

[1] B. Good, E. Colegrove, and M. O. Reese, "Effects of absorber near-interface compensation on Cd(Se,Te) solar cell performance," *Solar Energy Materials and Solar Cells*, vol. 246, p. 111928, Oct. 2022, doi: <u>10.1016/j.solmat.2022.111928</u>.

Grain boundaries, polycrystallinity, Chlorine and their role in Voc deficit

Amit Munshi

10-26-23

Assistant Research Professor

Department of Mechanical Engineering

Colorado State University

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

WALTER SCOTT, JR. COLLEGE OF ENGINEERING COLORADO STATE UNIVERSITY

<u>The puzzle -</u>

- ERE > 2%
- iV_{OC} > 1V
- iEfficiency >26%
- S < 100 cm/s
- TRPL $\tau > 2~\mu s$

If all is good, why no 1V/26%+ device yet?

SPF2050

First considerations -

- GaAs
 - Mono-crystalline : η 29%, Voc 1.12V, Jsc 29.78 mA/cm², FF 86.7%
 - Multi-crystalline : η 18.4%, Voc 0.994 V, Jsc 23.2 mA/cm², FF 79.7%

• Silicon –

- Mono-crystalline : η 26.7%, Voc 0.738V, Jsc 42.65 mA/cm², FF 84.9%
- Multi-crystalline : η 21.9%, Voc 0.672V, Jsc 40.76 mA/cm², FF 79.7%
- Micro-crystalline : η 11.9%, Voc 0.550V, Jsc 28.72 mA/cm², FF 75.0%

• CdTe –

- Poly-crystalline : η 21.4%, Voc 0.876V, Jsc 30.25 mA/cm², FF 79.4% [Presumably, CdSe/CdTe]
- MBE CdTe (ASU) : η 17.0%, Voc <mark>1.04V</mark>, Jsc 22.3 mA/cm², FF 73.6%
- Single crystal CdTe (NREL) : η 13.6%, Voc 1.017V, Jsc 25.2 mA/cm², FF 61.7%

Interface (Surface) and Chlorine -

COLORADO STATE UNIVERSITY

CST and CdTe grain boundaries under CL

EBSD data used to set simulation parameters

Shah, Akash, et al. "Understanding the copassivation effect of Cl and Se for CdTe grain boundaries." ACS Applied Materials & Interfaces 13.29 (2021): 35086-35096.

Device performance with Cl, Se, and Cl+Se

Thursday, October 26, 2023

ENERGY EFFICIENCY &

RENEWABLE ENERGY

SPF2050

U.S. Department Of Energy

COLLEGE OF ENGINEERING

COLORADO STATE UNIVERSIT

Device performance with Cl, Se, and Cl+Se

Shah, Akash, et al. "Understanding the copassivation effect of Cl and Se for CdTe grain boundaries." *ACS Applied Materials & Interfaces* 13.29 (2021): 35086-35096.

Relationship between GB structure to electronic behavior significantly under investigated

Grovenor, C. R. M. "Grain boundaries in semiconductors." *Journal of Physics C: Solid State Physics* 18.21 (1985): 4079.

Effects of GB and voltage bias in n-type px semiconductors

A schematic one-dimensional representation of the band-bending around a grain boundary, containing a high density of interface states, in an n-type semiconductor. Here the boundary region is shown as having the same bandgap as the bulk semiconductor, and the boundary is modelled as a Symmetric Schottky Barrier.

A schematic representation of the bandbending around a biased grain boundary. The band-bending on the forward-biased side of the SSB, qgFi,s relatively independent of the applied voltage, *V*,, because of the pinning of the Fermi level by the interface states.

Grovenor, C. R. M. "Grain boundaries in semiconductors." *Journal of Physics C: Solid State Physics* 18.21 (1985): 4079.

Thursday, October 26, 2023

VALTER SCOTT, JR. .EGE OF ENGINEERING

Formation of p-n-p junction at grain boundaries

Li, Chen, et al. "Grain-boundary-enhanced carrier collection in CdTe solar cells." *Physical review letters* 112.15 (2014): 156103.

Thursday, October 26, 2023

Role of Cl as a dopant requires greater attention

Zhang, Lixin, et al. "Effect of copassivation of Cl and Cu on CdTe grain boundaries." *Physical review letters* 101.15 (2008): 155501.

Thursday, October 26, 2023

Grain boundaries limiting Voc in px Semiconductors

Charged grain boundaries reduce the opencircuit voltage of polycrystalline solar cells— An analytical description

Thursday, October 26, 2023

WALTER SCOTT, JR. COLLEGE OF ENGINEERING COLORADO STATE UNIVERSITY

Orellana, Walter, Eduardo Menéndez-Proupin, and Mauricio A. Flores. "Self-compensation in chlorine-doped CdTe." *Scientific reports* 9.1 (2019): 9194.

"Particularly, the $(CI_{Te})_{+}$ shallow donor would be compensated by the $[(CI_{Te}-V_{Cd})(C_{3v})]_{-}$ shallow acceptor, **leading to the Fermi level pinning at VBM + 0.92 eV.** In addition, our results show that the formation of the CI_{Te} -Te_{cd} complex passivates the deep level associated to the Te antisite (Te_{cd}), confirming to some extent the beneficial effect of chlorine in CdTe."

<u>Acknowledgments</u>

- W.S. Sampath and J.R. Sites
- US Department of Energy SETO and CTAC
- NSF IUCRC for Solar Powered Future 2050 (and the Industrial Advisory Board)
- Past and current, students and colleagues at CSU

Characterizing hetero-interfaces at high spatial resolution using scanning transmission electron microscopy

Arashdeep Thind, Noah Kamm, <u>Robert F. Klie</u>

Department of Physics University of Illinois Chicago THE UNIVERSITY OF UNIVERSITY OF ILLINOIS CHICAGO

Outline

- 1) Defect Characterization and Elemental Diffusion at CdSeTe/CdTe interfaces
- 3) Machine Learning for Anomaly Detection in CdSeTe
- 4) Characterization Challenges of Back-Contact Passivation Layers

b. Sagar in and which

L O

CdTe Solar Cells

- Interfacial Se diffusion and structural defects vary during device lifetime.
- Atomic-structure and stability of back-contact surface are challenging to quantify.

ЦO

L O

Morphology of CdSeTe photovoltaics

- CdSeTe-based photovoltaics retain high photovoltaic efficiency despite a high concentration of grain boundaries and defects.
 - CdSeTe layer has a smaller grain size and hence a higher density of planar defects than the CdTe layer.

CdSeTe photovoltaics

- Se doping yields optimal band structure for optimal photovoltaic efficiency.
- Se doping lowers the band gap.
- Electrons and holes can be intrinsically separated because of band grading.

7th CdTe Workshop October 26th, 2023

L O Ц О

CdTe-based photovoltaics

Thomas A. M. Fiducia, et al., Nature Energy, DOI: 10.1038/s41560-019-0389-z

• Cathodoluminescence confirms that Se passivates grain boundaries as well as grain interiors.

(Area B)

80

CdSeTe (Area C)

CdTe

60

Grain boundary effects

"Effect of selenium and chlorine co-passivation in polycrystalline CdSeTe devices," J. Guo, A. Mannodi-Kanakkithodi; F.G. Sen; E. Schwenker; E. S. Barnard; A. C Munshi, W. Sampath; M.K.Y. Chan; R. F. Klie; Appl. Phys. Lett. 115, 153901 (2019) 7th CdTe Workshop

October 26th, 2023

L O

CdTe Modeling

- Cl , Se can passivate defect states in the mid-gap.
- Cl and Se segregation of dopants to grain boundaries is thermodynamically favorable.

7th CdTe Workshop October 26th, 2023

• Co-doping Se+Cl further reduces mid-gap states when substituted to dislocation

CORE. "Effect of selenium and chlorine co-passivation in polycrystalline CdSeTe devices ," J. Guo, A. Mannodi-Kanakkithodi; F.G. Sen; E. Schwenker; E. S. Barnard; A. Munshi, W. Sampath; M.K.Y. Chan; R. F. Klie; Appl. Phys. Lett. 115, 153901 (2019)

L O

Low temperature Se diffusion

- Se diffusion via grain boundaries at the CdSeTe/CdTe interface at operational conditions.
- How does Se diffusion impact electronic performance?

7th CdTe Workshop October 26th, 2023

Se diffusion at the interface

- Sharp interface for intragranular regions.
- Se diffusion between CdSeTe and CdTe grains via grain boundaries for intergranular regions.

7th CdTe Workshop October 26th, 2023

L O **Defect Diversity in CdSeTe/CdTe interface High defect density** Stacking Twin **Dislocation** Dislocation boundary fault core DFT Cd Те Se ---Bulk 1 Wide variety of defect types Bulk 2

7th CdTe Workshop

October 26th, 2023

OS (arb.

id-gap state

 $E - E_F (eV)$

Klie, R. F., Appl. Phys. Lett. 2019, 115 (15), 153901.

Nanoscale

0

detected in bulk CdSeTe and grain boundaries.

0

 Se and Cl co-passivation of grain boundaries.

Back-Surface Passivation

First sighting of CdTe/TeO₂ crystalline interface

DFT predictions of crystalline interfaces

microscopy study," F. A. Ponce; R. Sinclair; R. H. Bube, Appl. Phys. Lett. 39, 951-953

Ц О

(1981)

Back-Surface Passivation

L O

a to the second second second

Outlook

- Develop CdTe/TeO₂ model systems to study atomic and electronic structures of crystalline interfaces
- Study diffusion of Se after accelerated aging experiments as a function of CdSe/CdTe interface type
- Machine Learning and novel acquisition approaches allow for fast defect analysis
- 4D STEM for multi-dimensional defect and interface analysis

L O

> 7th CdTe Workshop October 26th, 2023

L O

New Instrumentation

The world's first monochromated, aberrationcorrected, magnetic-field-free STEM

Coming to a world-wide user facility in 2024 at UIC!

7th CdTe Workshop October 26th, 2023 NSF-DMR 2215976

The Nanoscale Physics Group

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

DOE SunShot EE0007545, EE0008557

October 26th, 2023

7th CdTe Workshop

COLORADO STATE
UNIVERSITYM. Heben,
S. Walajabad,
J. Sites,
A. Munshi

L O Surface Photovoltage Spectroscopy: Shining New Light on Back Contacts

Mike Scarpulla, Nathan Rock MSE & ECE University of Utah

Funding: DOE as part of CTAC

Path for CdTe is Still to Improve V_{oc} and FF

Origins of ~900 mV V_{oc} ceiling ?

- Bulk & GB SRH
- Band tails (rad or nonrad rcomb)
- Contact / interface recombination (maybe linked to band bending too)
- Contact carrier selectivity
- Contact V losses (energy offsets, V=IR)

U.

Want: Reversible, hole-selective, low-resistance, bifacial-enabling back contact

- Extract holes at E_{Fp} reversibly
- Reject e-
- Suppress interface recombination

Energy level alignment near V_{oc} Upwards band bending (charge) or CB offsets Passivate traps or keep e- away

How to characterize?

Surface Photovoltage

CdTe surface with E_F pinning from traps ϕ_S = surface built-in voltage

Excess carriers bias surface/bulk junction towards flatband ϕ_{SPV} magnitude depends on: ϕ_{S} , τ_{bulk} , μ_{bulk} , SRV, ρ_{surf} , $I_{light}(\lambda,t)$, ...

- SPV: same origin and physics as PV operation. Thus sensitive to all the same factors
- Surface photovoltage spectroscopy: like IQE, but at V_{oc} rather than J_{sc}
- Adds orthogonal information to JV, IQE, CV, etc
- Works for structures for which current is not an option: e.g. thick Al₂O₃ passivation

Our Photovoltage Spectroscopy Setup

- Transparent electrode forms MIS structure with sample
- Chopped monochromatic light (can add other sources and AM1.5 bias light)
- Can vary V, light spectrum, intensity, time modulation
- Can measure bifacial cells without separate electrode

Direct Simulation & Relation of IV, IQE, and SPV

SCAPS Direct Simulation

Monochromatic illumination Each λ : 10¹⁶ ph cm⁻² s⁻¹

Undoped CdTe Cell

E_f pinned by mid-gap states at back interface

IQE: Collection of Each Carrier (yes/no) SPV: Utilization of Voltage from Each Carrier (shades of grey)

Intuitive Understanding of SPV: Difference in Excess Carriers' Centers of Mass

Asymmetry in band diagram (e.g. any SCR) separates Δn and Δp distributions

Treating excess carrier distributions as a parallel plate capacitor gives good approximation

$$SPV = \frac{q}{\varepsilon_r \varepsilon_o} \Delta n \left[\langle x_n \rangle - \langle x_p \rangle \right]$$

Must model $\Delta n(x,t)$, $\Delta p(x,t)$ distributions: analytical or numerical

Analytical Model of SPV

Analytical model of Toušek and Touškova (2001,2008,2014) Can handle thin or thick bulk, SCR and depletion regions Splits device into layers: front junction, QNR, back SCR

 $J_{ph1} = j_{QNR1} + j_{SCR1}$ $J_{ph2} = j_{QNR2} + j_{SCR2}$

$$V_{oc1} = \frac{k_B T}{q} ln \left(1 + \frac{j_{ph1}}{j_{01}} \right) \quad \text{V from back}$$
$$V_{oc2} = -\frac{k_B T}{q} ln \left(1 - \frac{j_{ph2}}{j_{02}} \right) \quad \text{V from front}$$

Linear for small excitation intensities

$$V_{oc1} \cong \frac{k_B T j_{ph1}}{q} / j_{01}$$
$$V_{oc1} \cong \frac{k_B T j_{ph1}}{q} / j_{01}$$

$$SPV \cong \frac{k_B T}{q} \left(\frac{j_{ph1}}{j_{01}} + \frac{j_{ph2}}{j_{02}} \right)$$

Toušek, et al. 2001. <u>https://doi.org/10.1063/1.1332418</u>. Toušek, J., and J. Toušková. 2008. <u>https://doi.org/10.1016/j.solmat.2008.02.033</u>. Toušek, J., and J. Toušková. 2014. <u>https://doi.org/10.1063/1.4893973</u>.

Understanding Parameter Effects: Analytical

Like IQE, SPV spectral shape reflects generation, bulk recombination, surface recombination, ...

*note these SPV shapes assume uniform incident spectrum

Can Goodman Method Be Used for CdTe?

Method for extracting short minority carrier diffusion lengths

Assumptions:

- Minority diffusion length (L) << absorber thickness (d)
- SCR width w << $1/\alpha$ (absorption coeff.)

$$I(\lambda) = const \cdot \left(\frac{1}{\alpha(\lambda)} + L\right)$$

Need more complete modelling for modern CdSeTe devices

Goodman, JAP **32** 2550 (1961)

Example Data

Thank you U Toledo and NREL for providing samples on fast turnaround!

NREL: Cu Doped vs Undoped CdCl₂ Treated – 420 C, 450 C, 480 C

Stack: TEC12d Glass / 500 nm CST (30% Se) / 3 um CdTe

* Note: experimental data reflects incident spectrum and sample response

Modelling SPS Combining TRPL Lifetimes

 Both devices have significant back surface SCR's
Significantly higher SRV for CuCl₂ sample
Imperfect data for absorption and spectral fluxes preventing perfect agreement

NREL Undoped, CdCl₂ 480 °C

Analytical Model

SCAPS Model

NREL Cu soak, CdCl₂ 480 °C

U

SPS and Wet Etchants

University of Toledo: All are CdCl2 treated and Cu doped ~2x10¹⁴ cm⁻³

No etch HCL (Te rich) H2O2+KOH (Cd rich)

Stack: TEC12d Glass/130 nm CST (30% Se)/3.5 um CdTe

Next Steps

• SPS yields some orthogonal data on devices and processing

- Intuitive and numerical models of SPV / SPS compared to data
- Next: add realtime light monitor. Add DC AM1.5 light bias
- Open for collaborations we welcome new sample sets!

Thank you to CTAC funding, UToledo, and NREL for samples

Extraction of Key Metrics to Help Track Cell-Level Progress

Jim Sites, Colorado State University CdTe Workshop, October 26, 2023

Many metrics are important; three examples advocated here:

(1) Fully calibrated luminescence efficiency of near-band-gap and sub-gap absorber peaks.

(2) Diode equation parameters, especially diode quality factor, that limit fill-factor.

(3) Back-contact hole barrier from temperature dependence of current-voltage curves.

Let's move towards more routine extraction and tracking of key cell parameters, and work as a community on consistent measurement and analysis procedures.

(1) Calibrated Full Luminescence Spectra

- Figure shows several full spectra from CdTe cells with CdSeTe front layer. Key point is that there is large subgap peak that results from defect states within the band gap, which very likely contribute negatively to solar cell performance.
- Since the traditional silicon detector has little or no sensitivity below 1.2 eV, that large peak centered at about 1.1 eV in CdSeTe is often missed. A second detector is therefore needed.
- Critical therefore to track both peaks as adjustments are made in cell fabrication. Goal is to reduce the defect peak and increase the near-gap one.
- Important also to develop transparent back contacts so that the spectra can be measured from both sides.

Spectra here from Darius Kusciaukas at NREL

(2) Diode Equation Parameters

Shown here for the highest-voltage cell from R. Malick et al, IEEE J. Photovoltaics **13**, 510 (2023): J-V in the standard format, log of the shifted light curve, and linearization of the diode equation to highlight A and R.

Straightforward to calculate the fill-factor loss from each

Following Hegedus and Shafarman [Prog. in Photovoltaics 155 (2004)], and assuming no significant terms outside the basic diode equation:

 $J = J_0 \exp\left[\frac{q}{AkT}(V - RJ)\right] + GV - J_{\rm L}$

J-V data can be plotted in different ways with judicious selection of points fitted to allows accurate determination of conductance G, series resistance R, prefactor J_0 , and most important for impact on fill-factor, the diode quality factor A.

(3) Back-Contact Barrier from J-V-T

- In many cases, cells exhibit "rollover" in their current-voltage curve as the temperature is reduced. The onset is often an indication of a hole barrier at the back.
- A useful metric shown below is the current J_t at the rollover transition point, which can be related to the barrier height ϕ_b :

 $J_t \sim A^* T^2 e^{-q \varphi_b} /_{kT}$

Koishiyev et al, Proc. 33rd PVSC, 2.71 (2008)

- Best to for consistency to calculate the barrier at different temperatures.
- An additional value of J-V-T is to track V_{OC} vs T (right figure). It should be nearly linear with the T = 0 intercept near the band gap (1.4 eV in this case).

Figures from Chime Chinecherem and Katherine Zaunbrecher

Broader Picture

There are a large number of other possibilities, so as a community, let's prioritize where to adopt common procedures and direct comparisons with focus on what can be done relatively routinely at different labs.

Some of us can take the lead in coordinating at least one measurement and/or analysis area. As with joint projects in general, this requires organization and leg work, but could very well broaden our overall success.

Best to be selective: combination of group decision that an area is important and an individual commitment to bring labs together.

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Forces Influencing the Future of CdTe PV

Brion Bob, Solar Energy Technologies Office

October 2023

IRA's Advanced Manufacturing Tax Credit

+10% ITC/PTC Bonus for Systems that meet domestic content requirements.

Implementation for the tax credits, grants, loans, and other provisions within IRA is ongoing.

The Department of Treasury is the authority on how these tax credits will be implemented.

Component:	2023-2029	2030	2031	2032	2033+
Critical minerals	100%	100%	100%	100%	100%
All others	100%	75%	50%	25%	0%

Onshoring of the Silicon PV Supply Chain

Increasing PV System Deployment

Nearly 50% Expected Annual Growth Rate in US PV Deployment from 2022 to 2023

35% of all PV Modules deployed in US Utility Scale Systems in were CdTe in 2022

Sources: NREL Solar Industry Update Q32023 and First Solar Analyst Day 2023
Open Questions and Areas of Interest

